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ABSTRACT: This paper presents a comparison between 

new approaches introducing different chaotic maps with 

ergodicity, irregularity, and the stochastic property in 

Differential Evolution algorithm (DE). The members of the 

new family so-called Chaotic Differential Evolution (CDE) 

algorithms employ chaos in order to improve the global 

convergence by escaping the local solutions.        
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1. INTRODUCTION  
 

In order to overcome the shortcomings of traditional 

mathematical techniques, nature-inspired soft 

computing algorithms have been introduced. Several 

evolutionary or meta-heuristic algorithms have since 

been developed which combine rules and randomness 

mimicking natural phenomena. Many researchers 

have recently studied these meta-heuristic algorithms 

to solve various optimization problems. 

Chaos is a kind of characteristic of nonlinear systems 

and it has been extensively studied and applied in many 

fields. Although it appears to be stochastic, it occurs in a 

deterministic nonlinear system under deterministic 

conditions. Chaos has been extended to various 

optimization areas like in [EA11], [EA12] because it 

can more easily escape from local minima than other 

stochastic optimization algorithms. Recently, chaotic 

sequences have been adopted instead of random 

sequences and very interesting and somewhat good 

results have been shown in many applications. 

Differential evolution (DE) is a population based 

stochastic search algorithm [SP95], and has been 

successfully applied to solve complex problems 

including linear and nonlinear, Uni-modal and Multi-

modal functions. Over the recent years, DE has been 

successfully applied to different subjects such as 

reservoir system optimization [RK07], optimal design 

of shell and tube heat exchangers [BM07]. 

The main goal of this paper is to compare different 

Chaotic Differential Evolution (CDE) algorithms 

using different chaotic maps to asses the impact of 

incorporating them in the classical algorithm. This 

paper is structured as following: Section 2 is made for 

Chaos, section 3 is made for Chaotic maps, section 4 

is devoted to Differential Evolution approach, the 

proposed algorithms are illustrated in section 5, 

experiments and simulation results are shown in 

section 6, and finally the conclusion is presented.  

 

2. CHAOS  
 

In recent years, the theories and applications of 

nonlinear dynamics, especially of chaos, have drawn 

more and more attention in many fields. One is chaos 

controlling, and synchronization. One is chaos 

controlling, and synchronization. Another field is the 

potential applications of chaos in various disciplines 

including optimization. 

Mathematically, chaos is randomness of a simple 

deterministic dynamical system and chaotic system 

may be considered as sources of randomness [Ala10]. 

A chaotic map is a discrete-time dynamical system  

 

xn+1 = f (xn),   0 < xn < 1,  n = 0,1,2,… (1) 

  

running in the chaotic state. The chaotic sequence {xn : 

n = 0,1,2,…} can be used as spread-spectrum sequence 

and as a random number sequence. One-dimensional 

noninvertible maps are the simplest systems with 

capability of generating chaotic motion [Ott02].  

 

3. CHAOTIC MAPS 
 

In this section, some well-known maps are 

introduced. Later on, these maps are used in the 

Chaotic Differential Evolution (CDE) approaches that 

will be compared. 

 

3.1. Logistic map 
 

In 1976, Robert May pointed out that the logistic map 

led to chaotic dynamics [May76]. A logistic map is a 

polynomial map. It is often cited as an example of 

how complex behavior can arise from a very simple 

nonlinear dynamical equation [Ott02]. This map is 

defined by  

 

xn+1 = µ xn (1- xn) (2) 
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Obviously, xn ∈ [0,1] under the conditions that the 

initial x0 ∈ [0,1], where n is the iteration number and 

µ  = 4. 

 

3.2. Circle map  

 
The circle map is represented by  

 

1 ( / 2 )sin(2 ) mod(1)n n nx x d c zπ π
+

= + −  (3) 

 

where c = 0.5, d = 0.2, and x0 ∈ [0,1] generates 

chaotic sequence in [0,1]. 

 

3.3.  Tent map  

 

It resembles the logistic map. It generates chaotic 

sequences in (0,1) assuming the following form: 

 

 

(4) 

 

3.4.  Sinusoidal map 
 

It is represented by 

 

 
(5) 

 

when a = 2.3 and x0 = 0.7 it has the simplified form 

represented by 

 

 (6) 

 

It generates chaotic sequence in (0,1). 

 

3.5. Sinus map 
 

Sinus map is defined as follows: 

 

 
(7) 

 

4. DIFFERENTIAL EVOLUTION  
 

The key idea behind DE is a scheme for generating trial 

parameter vectors. Mutation and crossover are used to 

generate new vectors (trial vectors), and selection then 

determines which of the vectors will survive the next 

generation [BM07]. A set of D optimization parameters 

is called an individual, which is represented by a D-

dimensional parameter vector. A population consists of 

NP parameter vectors Xi,G , (i = 1,2,...,NP for each 

generation G). According to Storn and Price, DE’s basic 

strategy can be described as follows. 

 

 

 

4.1. Mutation 
 

For each target vector Xi,G (i = 1,2,...,NP), a mutant 

vector Vi,G+1 is generated according to 

 

 (8) 

                     r1 ≠ r2 ≠ r3 ≠ i.  

 

where r1, r2, r3 belong to {1, 2,...,NP} are randomly 

chosen integer indexes. Note that indexes have to be 

different from each other and from the running index. 

F is called mutation factor between [0,1] which 

controls the amplification of the differential variation 

(Xr2,G - Xr3,G). 

 

4.2. Crossover 
 

In order to increase the diversity of the perturbed 

parameter vectors, crossover is introduced. The target 

vector is mixed with the mutated vector, using the 

following scheme, to yield the trial vector Ui,G+1 = 

(u1i,G+1,u2i,G+1,…, uDi,G+1), that is 

 

 
(9) 

                        j = 1,2,…,D.  

 

where rand (j) is the jth evaluation of a uniform 

random number generator between [0,1]. CR is the 

crossover constant between [0,1] which has to be 

determined by the user. rnb(i) is a randomly chosen 

index from 1,2,…,D which ensures that Ui,G+1 gets at 

least one parameter from Vi,G+1. Otherwise, no new 

parent vector would be produced and the population 

would not alter. 

 

4.3. Selection 
 

To decide whether or not it should become a member 

of the next generation G + 1, the trial vector Ui,G+1 is 

compared to the target vector Xi,G. Assume that the 

objective function is to be minimized, according to 

the following rule: 

 

 
(10) 

 

That is, if vector Ui,G+1 yields a better evaluation 

function value than Xi,G, then Xi,G+1 is set to Ui,G+1; 

otherwise, the old value Xi,G is retained. As a result, 

all the individuals of the next generation are as good 

as or better than their counterparts in the current 

generation.  
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5. CHAOTIC DIFFERENTIAL EVOLUTION 

ALGORITHMS 
 

In the proposed algorithms, when a random number is 

needed by the classical DE algorithm, it is generated 

by iterating one step of the chosen chaotic map that 

has been started from a random initial condition at the 

first iteration. Also, both constants F and CR are 

updated chaotically as shown follows: 

 

FG+1 = f (FG),  Fmin ≤ FG ≤ Fmax (11) 

CRG+1 = f (CRG),  CRmin ≤ CRG ≤ CRmax, 

                              G = 1,2,… 

(12) 

 

where the values of  Fmin, Fmax, CRmin, and CRmax are 

user defined.  

Along the rest of this section, the proposed Chaotic 

Differential Evolution (CDE) algorithms will be 

illustrated as follows 

 

5.1. CDE1 
 

Initial population is generated by iterating the 

selected chaotic maps until reaching NP. In this 

algorithm, F and CR values are fixed like in original 

DE algorithm. 

 

5.2. CDE2 
 

In this algorithm, F value has been modified by the 

selected chaotic maps as in Eq.(11).  

 

5.3. CDE3 
 

In this algorithm, CR value has been modified by the 

selected chaotic maps as in Eq.(12).  

 

5.4. CDE4 
 

In this algorithm, F and CR values have been 

modified by the selected chaotic maps as in Eq.(11) 

and Eq.(12), respectively. 

 

5.5. CDE5 

 

In this algorithm, CDE1 and CDE2 are combined, 

that is initial population is generated by iterating the 

selected chaotic maps and F value has been modified 

by the selected chaotic maps when needed.  

 

5.6. CDE6 

 

In this algorithm, that is initial population is 

generated by iterating the selected chaotic maps and 

CR value has been modified cha chaotically.  

 

5.7. CDE7 

 

CDE1, CDE2, and CDE3 are combined. In this 

approach, initial population is generated by iterating 

the selected chaotic maps. F and CR values have been 

modified by the selected chaotic maps. 

 

6. EXPERIMENTS AND RESULTS 
 

The initial DE parameters are set at NP = 50, G = 500 

for all proposed algorithms. The value of F is set at F 

= 0.5 for algorithms CDE1, CDE3, and CDE6, while 

CR = 0.8 for algorithms CDE1, CDE2, and CDE5. 

For the rest algorithms CRmin = 0.7, CRmax = 0.9, Fmin 

= 0.3, and Fmax = 0.6. 

The two selected benchmark functions are Griewangk 

and Rastrigin functions defined in Eq.(13) and 

Eq.(14), respectively. Table 1 shows the main 

properties of the selected benchmark functions used 

in the experiments, where lb indicates lower bound, 

ub indicates upper bound, and opt indicates optimal 

point. 

 

 
(13) 

  

 (14) 

 
Table 1: Selected benchmark functions 

No. Function  lb ub opt. property 

1 Griewangk -50 50 0 
Multi-

modal 

2 Rastrigin -5.12 5.12 0 
Multi-

modal 

   

Each algorithm was run for 100 times for each 

function to catch its stochastic properties. The goal is 

not to find the global optimum values but to find out 

the potential of the proposed algorithm. Algorithm 

success rate defined in Eq.(15) has been used for 

comparison of the results obtained from both 

functions. 

 

 

(15) 

 

where NTsuccessful is the number of trials, which found 

the solution on the Qlevel in the allowable maximum 

iteration. NTall is the number of all trials. Qlevel is the 

end condition to stop the algorithm, when it 

converges into Qlevel tolerance [Ala10]. Tables 2 and 

3 depict the success rates of the proposed algorithms 

for both functions Griewangk and Rastrigin (N = 2), 

respectively.  
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Table 2: Success rates of CDE algorithms for 

Griewangk Function (N = 2) 

Qlevel CDE1 CDE2 CDE3 CDE4 CDE5 CDE6 CDE7 

Logistic       

1.e-5 45 40  60  70  45  94 53 

1.e-6 11 11  19  48  18  62  37 

Circle       

1.e-5 47  68  55  62 77  67  82 

1.e-6 13 29  18  29  23  39  44 

Tent       

1.e-5 46  56  57 50  49  60 83 

1.e-6 12  28 17  12  24  18  46 

Sinusoidal       

1.e-5 44 48 83 50 54 91 51 

1.e-6 12 25 26 14 23 72 13 

Sinus       

1.e-5 55  72  75  52  60  49  56 

1.e-6 15  29  44  48  27  26  40 

 
Table 3: Success rates of CDE algorithms for Rastrigin 

Function (N = 2) 

Qlevel CDE1 CDE2 CDE3 CDE4 CDE5 CDE6 CDE7 

Logistic       

1.e-5 45 40 55 70 55 93 52 

1.e-6 15 10 15 45 11 43 36 

Circle       

1.e-5 40 60 45 49 67 58 80 

1.e-6 12 25 10 28 22 30 38 

Tent       

1.e-5 35 40 35 45 37 42 70 

1.e-6 10 27 14 15 27 19 50 

Sinusoidal       

1.e-5 40 55 80 55 50 90 57 

1.e-6 17 25 24 16 30 77 15 

Sinus       

1.e-5 43 70 75 59 61 49 57 

1.e-6 17 28 45 41 23 27 32 

 

CONCLUSION 
 

In this paper, Several new chaotic DE algorithms 

have been proposed and different chaotic maps have 

been analyzed in the benchmark functions. Five 

chaotic maps have been embedded to adapt the 

parameters of the standalone algorithm. This has been 

done using the chaotic number generators each time a 

random number is needed by the classical DE 

algorithm. It has been also shown that, these methods 

especially CDE4 and CDE6 algorithms have some 

what increased the solution quality, which gives an 

indication that the more involvement of chaos in 

updating the algorithm parameters the better solutions 

attained.   
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