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Abstract: in this paper, we try to tackle the drawbacks of the well-known Multi-Objective technique є-constraint 
method, namely the computational difficulties and obtaining proper efficient solutions. We incorporate a well-
known chaotic function, so-called the logistic map to the classical є-constraint method for improving its results. A 
well known bench-mark test function is adopted for validation of the new approach, showing its ability to explore 
various areas of the pareto-optimal front in an efficient way. The chaotic є-constraint approach obtains diversified as 
well as well representative solutions.  
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1.  Introduction  
Multi-Objective programming is a part of 

mathematical programming dealing with decision 
problems characterized by multiple and conflicting 
objective functions that are to be optimized over a 
feasible set of decisions. Such problems, referred to as 
Multi-Objective Programs (MOPs), are commonly 
encountered in many areas of human activity including 
engineering, management, and others [7]. In general, a 
k-objective minimization problem can be formulated 
as:  

   min {(f1(x),..., fk (x)): x X }      (1) 

We usually assume that the set X is given implicitly in 
the form of constraints resulted in the feasible region in 
the decision space [10], i.e.,   
X : = {xRn : gj (x) ≤ 0, j = 1,...,s; hj (x) = 0, 
j = 1,...,m} 

     (2) 

One of the main differences between single objective 
and multi-objective optimization is that in multi-
objective optimization the objective functions 
constitute a multi-dimensional space, in addition to the 
usual variable space. For each solution x in the variable 
space, there exists a point in the objective space, 
denoted by f (x) = z = (z1, z2, . . . , zk)

T . A mapping 
exists between an n-dimensional solution vector and a 
k-dimensional objective vector through the objective 
function, constraints, and variable bounds [5]. Fig.1 
illustrates these two spaces and a mapping between 
them. 
 
Definition 1 (Pareto Dominance): Without loss of 
generality in a minimization problem, a decision vector  
x1 X  is said  to dominate  a decision vector x2 X  iff  
the following two conditions are satisfied:  

1. The decision vector x1 is not worse than x2 in 
all objectives, or  i  {1,2,…,k} : ƒi (x1) ≤ ƒi 

(x2). 
2. The decision vector x1 is strictly better than x2  

in at least one objective, or  i  {1,2,…,k} : 
ƒi (x1) < ƒi (x2).  

If any of the above conditions is violated, then 
x1 does not dominate x2. A decision vector x1X is 
called Pareto-optimal if there is no another x2 X that 
dominates it and in this case x1 is called nondominated 
with respect to X; also an objective vector is called 
Pareto-optimal if the corresponding decision vector is 
Pareto-optimal. 
 

 
Fig. 1. Decision and Objective spaces in MOP [3] 

 
  
Definition 2 (Pareto Optimal Set): The Pareto 
Optimal Set P* is defined by [11]:    

P* = {xX | x is pareto-optimal}      (3)  
Many researchers had developed a lot of 

mathematical programming techniques to solve Multi-
Objective Optimization problems, some representatives 
of this class of techniques are the weighting method, 
the є-constraint method, and the goal programming; 
also some authors had adopted the Evolutionary 
Algorithms (EAs), Simulated Annealing (SA), Genetic 
Algorithms (GA), as well as Swarm Intelligence (SI) 
techniques to deal with Multi-Objective Problems [6]. 
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The main purpose of this paper to obtain the pareto 
optimal solutions in an efficient way by incorporating 
chaos to the classical є-constraint approach to enhance 
the performance and tackle the main drawback of the 
original method. The rest of the paper is structured as 
following; in section 2 the є-constraint method is 
illustrated, section 3 is devoted to chaos, section 4 is 
made for the proposed method, finally section 5 is for 
the numerical example.  
 
2.  The є-constraint approach 

The є-constraint method first appeared in [9] 
and is discussed in detail in Changkong and Haimes 
[4]. It is based on a scalarization where one of the 
objective functions is minimized while all the other 
objective functions are bounded from above by means 
of additional constraints in the following manner:  

   min {(fp(x): fi (x) ≤ εi , i ≠ p,  x X }      (4) 

Where єP = (є1,...,єP-1,єP+1,...,єk)
T Rk-1 and p 

 {1,…,k}. 
The main idea of the є-constraint method is to solve a 
sequence of є-constraint problems P(є), that are defined 
by transforming one of the objectives into a constraint 
[8]. Many issues aroused considering the limitations 
and drawbacks after the original version appeared, 
especially, when dealing with high-dimensional 
problems. The process of obtaining a proper efficient 
solution of the reduced single program, stability of the 
solution, beside the feasibility of the single programs 
depending on values chosen of (є) which definitely will 
be reflected on the number of computations done. 
Although, Recently Few proposals tried to tackle the 
limitations mentioned [7,8], it seems to be open 
challenging issues for researchers.    
 
3.  Chaos            

The scientific meaning of the term Chaotic 
System or Chaos for short is a phenomenon that has 
deterministic rules behind irregular appearances [2]. 
Chaos is a kind of common nonlinear phenomenon, 
which has diverse, complex and sophisticated native 
under apparent disorder. Chaotic motion is 
characterized by ergodicity, randomness, and 
‘regularity’ which can traverse all status according to 
its own ‘rule’ without repetition [12]. In recent years, 
the theories and applications of nonlinear dynamics, 
especially of chaos, have drawn more and more 
attention in many fields. One is chaos controlling, and 
synchronization. Another field is the potential 
applications of chaos in various disciplines including 
optimization [13]. Mathematically, chaos is 
randomness of a simple deterministic dynamical 
system and chaotic system may be considered as 
sources of randomness. A chaotic map is a discrete-
time dynamical system running in chaotic state of the 
following form:  

       zk+1 = f (zk) , 0 < zk < 1,    k = 0,1,2,...     (5)  
The chaotic sequence { zk : k = 0,1,2,...} can be used as 
spread-spectrum sequence as random number 
sequence. Merely a few functions (chaotic maps) and 
few parameters (initial conditions) are needed even for 
very long sequences. In addition, an enormous number 
of different sequences can be generated simply by 
changing its initial condition. Recently, chaotic 
sequences have been adopted instead of random 
sequences and very interesting and somewhat good 
results have been shown in many applications [1]. The 
approach proposed through this paper based on a well 
known chaotic map in the field, so-called the logistic 
map [13]:  
              zk+1 = 4 zk (1- zk)                  (6) 
 
4.  The chaotic є-constraint approach 

The aim of the є-constraint is to approximate 
the Pareto set by solving a sequence of constrained 
single-objective problems depending on the є values 
for all objectives considered, choosing these values 
improperly might leads that the single programs are not 
feasible or provide inefficient solutions. Chaotic 
sequences generated from maps (the logistic map is 
considered in this paper) are employed to guarantee the 
feasibility of the single programs, while the traverse 
without repetition of chaos make it explore the pareto 
front more efficiently, resulting in better diversification 
of solutions. Without loss of generality, the chaotic є-
constraint method for k- minimization problem will be 
as following:   
Step 1. For i ≠ j,  j = 1,2,...,i-1,i+1,...,k 

Set i = 1  
Step 2. Compute the Ideal and Nadir vectors: 

f I = ( f1
I, f2

I, f3
I,..., fk

I ) 
f N = ( f1

N, f2
N, f3

N,..., fk
N ) 

Step 3. Initiate the vector of chaotic variables (z) 
Rk-1 Such that 0 < zj < 1 

Step 4. While m ≤ No. of iterations, perform the 
following steps: 

(a) є j = fj
N – zj ( fj

N – fj
I
 ) 

(b) Solve Pm(є) and add solutions 
obtained to the set of 
nondominated solutions 

(c) zj = 4 zj (1- zj) , m = m+1 
Step 5. While i < k, Set i = i+1, j as shown in 

step 1, m =1, and then go to step 4 
 
5.  Numerical example 

In this section, we adopted one of the well 
known test functions in the specialized literature called 
ZDT1 [14], this bench-mark test function being used 
widely in Multi-Objective Optimization area, have 
different points of difficulties, which make the 
covering process of the pareto front is so complicated. 
ZDT1 have two objectives to be optimized over a 
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feasible set originated from 30 design variables 
included, Pareto-optimal front is convex, continuous, 
and have uniform distribution of solutions.   
ZDT1 (2-objective, 30 parameters):  
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A code was developed under MATLAB 
software environment to solve the ZDT1 problem, 
applying m = 100, k = 2 to solve this bi-objective 
problem. Fig. 2 shows the pareto-optimal front 
produced by the proposed approach in the Objective 
space after solving 200 single-objective constrained 
problems (100 for each objective).  
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      Fig. 2. Pareto-optimal front produced in ZDT1  

 
As shown in Fig. 2, the pareto-optimal front 

shows the diversified set of nondominated solutions 
along all the pareto front, which reflects the ability of 
the new proposed approach to explore the whole 
solution set efficiently to produce well representative 
solution set. The new approach did not stuck into 
infeasible single-objective programs to be solved like 
the previous related work due to the ergodicity, and 
randomness of the chaotic variables leads to avoiding 
the limitation of improper efficient solutions, also the 
chaotic nature implies more diversification in solutions 
due to non repetition of the chaotic variables which 
limits extra computations. 
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