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A B S T R A C T   

Differential expression of minor histocompatibility antigens between the recipient and donor determines their 
disparity and can be modified by immunoproteasomes that regulate their processing and presentation. We 
examined the impact of HA-1 and HA-8 disparity, and immunoproteasome LMP7 polymorphism in 130 pairs. In 
multivariate analysis, HA-1 disparity showed a statistically significant association with an increased incidence of 
acute graft-versus-host disease (aGVHD) II–IV (p = 0.043, HR: 3.71, 95%CI = 1.04–13.26), while LMP7-Q/Q 
showed a trend toward increased incidence of aGVHD compared to LMP7-Q/K and K/K genotypes (p = 0.087, 
HR: 2.36, 95%CI = 0.88–6.31). All HA-1 and HA-8 disparate patients who developed aGVHD had the LMP7-Q/Q 
genotype. No significant association could be detected between HA-1, HA-8, or LMP7 and chronic GVHD, 
relapse-free survival (RFS), overall survival (OS), or transplant-related mortality (TRM). In conclusion, we 
suggested an association between the HA-1 disparity and the risk of developing aGVHD with a possible modi-
fying effect of LMP7.   

1. Introduction 

Allogeneic hematopoietic stem cell transplantation (AHSCT) is a 
curative treatment for hematological malignancies. Differential expres-
sion of the endogenously generated polymorphic minor histocompati-
bility antigens (mHags) presented in the context of shared HLA 
molecules results in disparities between the recipient and donor after 
HLA-matched AHSCT [1]. Disparities in the mHags can induce specific 
alloimmune responses in the recipient involving CD8+ cytotoxic T cells, 
CD4+ T helper (Th) cells and T regulatory (Treg) cells [2]. Disparity may 
mediate graft-versus-host disease (GVHD) and graft-versus-leukemia 
(GVL) effects [3]. Discrepancies have been reported in the impact of 
disparities in the mHags on the transplantation outcome pointing to the 
possible contribution of factors related to their binding affinity and 
presentation in the context of the HLA molecules as well as factors 
related to the alloreactive response [4–6]. The alteration in the pro-
cessing of mHags rather than the diversity of their interaction with the 

major histocompatibility complex (MHC) molecule or the T- cell re-
ceptor (TCR) can result in disparity [1]. The presentation of these pep-
tides in the context of MHC class I molecules involves their processing 
through the proteasome. The constitutively expressed proteasome plays 
a central role in the degradation and presentation of cytosolic proteins to 
CD8+ cytotoxic T cells [7,8]. The catalytic immunoproteasome subunit 
(low molecular mass polypeptide) LMP7 (b5i) is expressed in monocytes 
and inducible in lymphocytes and non-hematopoietic cells by interferon 
gamma (IFN-γ) and tumor necrosis factor alpha (TNFα) under inflam-
matory conditions [8–11]. LMP7 has distinct cleavage preferences over 
the constitutive proteasome, generating a different pool of peptides 
better suited to bind to MHC molecules. Therefore, LMP7 induces a more 
efficient immune response than the constitutive proteasome and par-
ticipates in shaping the repertoire of peptides presented in the context of 
MHC class I to cytotoxic T cells [10,12–15]. LMP7 also affects Th cell 
differentiation and the production of proinflammatory cytokines and 
has been implicated in T cell-mediated autoimmune diseases [16,17]. 
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The differential tissue distribution of the mHag allows dissection 
between disparity induced GVHD and GVL effects [18]. mHags exclu-
sively expressed on hematopoietic cells can induce the GVL effect and 
are considered ideal targets for immunotherapy in patients post- 
transplantation [19,20]. T cells that recognize broadly expressed 
mHags can also induce harmful GVHD [21]. The autosomal HLA-A2 
restricted hematopoietic HA-1 mHags (HMHA1) and the ubiquitously 
expressed HA-8 mHags have been identified based on their binding af-
finity to class I MHC [1,22,23]. A common SNP in the HA-1 encoding 
gene (rs1801284) creates a histidine (HA-1H) to arginine (HA-1R) sub-
stitution. The immunogenic HA-1H encoded peptide has a higher sta-
bility than its non-immunogenic counterpart HA-1R allele [22]. Another 
SNP in the HLA-A2 restricted HA-8 mHags, (rs2173904), generates 
peptides with either arginine (HA-8R) or proline (HA-8P). The immu-
nogeneic HA-8R peptide is more efficiently transported by the trans-
porter associated with antigen processing (TAP) protein and 
subsequently presented on the cell surface compared to the variant HA- 
8P peptide [1]. 

Selective inhibition of LMP7 improved acute GVHD in murine 
mainly by reducing the presentation of mHags [24]. LMP7 is encoded by 
the proteasome subunit beta-type 8 (PSMB8) gene located in the short 
arm of chromosome 6 within the MHC class II region [10]. Genetic 
variants of LMP7 may modify the presentation of mHAgs in the context 
of class I MHC. The LMP7 polymorphism (rs2071543) leads to glutamine 
(Q) to lysine (K) substitution at codon 145 and is associated with the 
regulation of gene transcription [25]. Our study aimed to examine the 
impact of HA-1 and HA-8 mHag disparities and LMP7 polymorphism on 
transplantation outcome. We also investigated the possible modifying 
effect of LMP7 on the impact of mHags in matched related AHSCT. 

2. Material and methods 

2.1. Patients 

The study included 130 recipients and their respective HLA- matched 
sibling hematopoietic stem cell donors. Transplants were performed 
between 2015 and 2018 at Nasser Institute, Ministry of Heath, Egypt. 
The study was approved by the institutional review board. Informed 
consent was obtained. They were 81 (62.3%) males and 49 (37.7%) 
females. Their median age was 30.5 with range (4–56) years. They 
included 19 children and 111 adults. Patient characteristics are sum-
marized in table 1. Diagnoses included acute myeloid leukemia (AML), 
acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML), 
and myelodysplastic syndrome (MDS). Patients received conditioning 
regimens and GVHD prophylaxis as defined in table 1. Acute GVHD was 
graded according to ‘‘the 1994 Consensus Conference on Acute GVHD 
Grading’’ [26]. Classification of cGVHD was performed using the “Na-
tional Institutes of Health Consensus Development Project Criteria”’ 
[27]. Disparity in the GVHD direction was identified when the recipient 
had the immunogenic allele and the donor was homozygous for the non- 
immunogenic allele (HA-1H:immunogenic, HA-1R : non-immunogenic 
and HA-8R : immunogenic, HA-8P: non-immunogenic). Analysis was 
performed in the presence of the appropriate HLA restriction molecule 
(HLA-A*02-restricted). Analysis in the presence or absence of HLA- 
A*02 was also performed (HLA-A*02-unrestricted). 

2.2. Methods 

Genotyping was performed in the Bone Marrow Transplantation 
Laboratory at the National Cancer Institute, Cairo University for the 
mHags HA-1 and HA-8 for recipients and donors by sequence-specific 
primers-polymerase chain reaction (SSP-PCR) method using allele- 
specific primers as previously described [28,29]. LMP7 polymorphism 
was investigated in recipients and donors using the amplification re-
fractory mutation system (ARMS) PCR according to Lim et al. [30] to 
identify the LMP7-Q and K alleles. HLA-A*02 typing was performed 

using reverse sequence-specific oligonucleotide (rSSO) (Innogenetics, 
Belgium and One Lambda, USA). 

2.3. Statistical analysis 

Statistical analysis was done using IBM SPSS® Statistics version 22 
(IBM® Corp., Armonk, NY, USA). Ages were expressed as median and 
range. Qualitative data were expressed as frequency and percentage. 
Pearson’s chi-square test or Fisher’s exact test was used to examine the 
relation between qualitative variables. Survival analysis was done using 
the Kaplan-Meier method and comparison between two survival curves 
was done using log-rank test. Multivariate analysis was done using Cox- 
proportional Hazard regression model for the factors affecting survival 
on univariate analysis. Hazard ratio (HR) with it 95% confidence in-
terval (CI) was used for risk estimation. All tests were two-tailed. A p- 
value <0.05 was considered significant. 

3. Results 

Patient characteristics are presented in Table 1. 

3.1. HA-1, HA-8 disparity, and LMP7 polymorphism 

The distribution of HA-1, and HA-8, and LMP7 genotypes in re-
cipients and donors was in Hardy-Weinberg equilibrium. HLA-A*02- 
unrestricted HA-1 disparity in the GVHD direction was detected in 13/ 
130 recipient/donor pairs (10%), and HA-8disparity in 20/130 (15.4%). 
HLA-A*02-restricted HA-1 and HA-8 disparities were reported in 7/130 
(5.3%) and 6/130 (4.6%) patients, respectively. The frequency of LMP7 

Table 1 
Patients’ characteristics.  

Characteristics Number (%) 

Age* 30.5 (4–56) years  

Gender 
Male 81 (62.3) 
Female 49 (37.7)  

Disease at transplantation 
Acute myeloid leukemia 83 (63.8) 
Acute lymphoblastic leukemia 29 (22.4) 
Chronic myeloid leukemia 13 (10.0) 
Myelodysplatic syndrome 5 (3.8)  

Stage of the disease 
Low, intermediate 98 (73.4) 
High 32 (24.6)  

Gender mismatch between recipient and donor 
Female to male 33 (25.3) 
Other combinations 97 (74.6)  

Conditioning regimen 
Busulfan/Cyclophosphamide 74 (56.9) 
Fludarabin-based  

Fludarabin/Alkylating agent 9 (6.9) 
Fludarabin/Busulfan 31 (23.8) 
Fludarabin/Cyclophosphamide 3 (2.3) 

TBI/Cyclophosphamide 13 (10)  

Graft-versus- host disease prophylaxis 
Cyclosporine, Methotrexate 102 (78.5) 
Cyclosporine, Mycophenolate mofetil 11 (8.5) 
Cyclosporine, post-Cyclophosphamide 17 (13.1)  

Acute graft-versus-host disease 
Grade 0-I 105 (80.8) 
Grade II-IV 25 (19.2)  

Chronic graft-versus-host disease 
No or mild 115 (88.5) 
Extensive 15 (11.5) 

*Median (range). 
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genotypes in recipients and their HLA-matched identical siblings was 
83/130 (63.9%) for LMP7-Q/Q, 41/130 (31.5%) for LMP7-Q/K and 6/ 
130 (4.6%) for LMP7-K/K. 

3.2. Association with acute and chronic graft-versus-host diseases 

Acute GVHD II-IV occurred in 25/130 (19.2%) of the transplanted 
patients. Association between HA-1, HA-8 disparities, and LMP7 poly-
morphism with aGVHD is shown in Table 2. Recipients with HA-1 
disparity showed a trend toward an increased cumulative incidence of 
aGVHD II–IV at 6 months compared to those without disparity (p =
0.090, HR: 2.72, 95%CI = 0.81–9.11) as shown in Fig. 1. In multivariate 
analysis adjusted for other risk factors, HA-1 disparity was an inde-
pendent risk factor for developing aGVHD II–IV (p = 0.043, HR: 3.71, 
95%CI = 1.04–13.26). The use of cyclosporine (CSA) and methotrexate 
(MTX) as GVHD prophylaxis resulted in a significantly higher incidence 
of aGVHD in comparison to post-transplant cyclophosphamide (post-CY) 
and mycophenolate mofetil (MMF) based regimens (p = 0.016, HR: 
12.4, 95%CI:1.61–95.44) as shown in the Table 3. The risk of aGVHD 
was also increased with age (Table 3). 

Recipients with HA-8 disparity did not show a significant association 
with the incidence of aGVHD II–IV compared to those without disparity 
(p = 0.309, HR: 2.07, 95%CI = 0.49–8.82). Patients with LPM7-Q/Q 
genotype showed a significant association with increased cumulative 
incidence of aGVHD II–IV compared to those with LMP7-Q/K or K/K 
genotypes (p = 0.043, HR: 2.63, 95%CI = 0.99–7.03) as shown in 
Table 2 and Fig. 2. In multivariate analysis, LMP7-Q/Q showed only a 
trend toward an increased incidence of aGVHD (p = 0.087, HR: 2.36, 
95%CI = 0.88–6.31) (Table 4). All HA-1 and HA-8 disparate recipients 

Fig. 1. Association between HA-1 disparity and cumulative incidence of 
aGVHD at 6 months (HA-1 disparity versus no disparity). 

Table 3 
Multivariate Cox-proportional hazard regression analysis of risk factors associ-
ated with aGVHD including HA-1 disparity.  

Factor p- 
value 

HR 95% CI 

Age (≥40 vs <40)  0.030  2.67 1.10–6.50 
Gender mismatch (female donor to male 

recipient) vs other combinations  
0.963  0.97 0.40–2.37 

Conditioning regimen (Bu/Cy, Fludarabine-based 
vs TBI/CY)  

0.233  3.39 0.45–25.40 

GVHD prophylaxis (CSA, MTX vs CSA, post-CY, 
MMF)  

0.016  12.40 1.61–95.44 

HA-1 disparity (Disparate vs non-disparate)  0.043  3.71 1.04–13.26 

Bu, Busulfan; TBI, total body irradiation; CSA, Cyclosporine; MTX, metho-
trexate; post-CY, post-cyclophosphamide; MMF, Mycophenolate mofetil; HR, 
hazard ratio; CI, confidence interval. 
Bold p values indicate statistical significance or near significance. 
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who developed aGVHD had the LMP7-Q/Q genotype. The 2 patients 
with combined HA-1 and HA-8 disparities who did not develop aGVHD 
had the LMP7-K allele. HA-1 disparity (HLA-A*02-unrestricted) did not 
show a significant association with aGVHD (p = 0.774, HR:1.91, 95%CI 
= 0.35–3.98), while HA-1 disparity combined with LMP7-Q/Q genotype 
showed a near significant association with aGVHD (p = 0.172, HR:2.26, 
95%CI = 0.67–7.56) compared to HA-1 disparity combined with LMP7- 
Q/K or K/K genotypes (p = 0.470) (Table 2, Figs. 3 and 4). 

Extensive chronic GVHD (cGVHD) occurred in 15/130 (11.5%) pa-
tients. The cumulative incidence of extensive cGVHD at 2 years was not 
significantly different in recipients with HA-1 or HA-8 disparity 
compared to those without disparity (p = 0.347, p = 0.338, respectively) 
(Table 2). Patients with the LMP7- Q/Q genotype did not show a sig-
nificant difference in the incidence of cGVHD compared to those with 
the LMP7-Q/K and K/K genotypes (p = 0.331). A combined analysis of 
LMP7 polymorphism and HA-1 or HA-8 disparity also did not show an 
association with cGVHD (Table 2). 

3.3. Association with relapse-free survival, overall survival and 
transplant- related mortality 

The median follow-up period was 19.4 (0.2–49.6) months. In case all 
patients were censored, the HR could not be calculated and was marked 
as not calculated (NC), and then the Kaplan-Meier method was used to 
calculate p-values as shown in table 2. The rate of relapse-free survival 
(RFS) at 2 years was 71.7%. HA-1 disparity did not show a significant 
association with RFS (84.6% in the disparate patients versus 70.2% in 
the non-disparate group, p = 0.258) or HA-8 disparity (79.7% in the 
disparate patients versus 70.3% in the non-disparate group, p = 0.433) 
as shown in Table 2. LMP7 polymorphism did not show a significant 
association with RFS (68.5% in patients with LMP7-Q/Q versus 75.2% in 
patients with LMP7-Q/K or K/K genotypes (p = 0.512) (Table 2). Re-
cipients with combined HLA-A*02-unrestricted HA-1or HA-8 disparity 
combined with LMP- Q/Q or LMP7-K/Q and K/K genotypes did not show 
a significant association with RFS compared with others as shown in 
Table 2. The rate of overall survival (OS) at 2 years was 73.1% and was 
not influenced by HA-1 disparity (100% in the disparate patients versus 
73% in the non-disparate group; p = 0.283), HA-8 disparity (100% in 
the disparate patients versus 73.8% in the non-disparate group; p =
0.240) or LMP7 polymorphism (70.3% in patients with LMP7-Q/Q 
versus 76.4% in those with LMP7-Q/K and K/K genotypes (p = 0.685) 
(Table 2). Recipients with combined HLA-A*02-unrestricted HA-1or 
HA-8 disparity combined with LMP7-Q/Q or LMP7-Q/K and K/K geno-
types did not show a significant association with OS compared with 
others as shown in Table 2. The cumulative incidence of transplant- 
related mortality (TRM) was 20.1%. We did not detect a statistically 
significant association between TRM and HA-1 disparity (none in the 
disparate patients versus 21.3% in the non-disparate group, p = 0.229), 
HA-8 (none in the disparate patients versus 21.1% in the non-disparate 
group, p = 0.247) or with LMP7 polymorphism (20.9% in patients with 
LMP7-Q/Q genotype versus 18.6% in patients with LMP7- Q/K or K/K 
genotype, p = 0.954) (Table 2). 

Fig. 2. Association between LMP7 polymorphism and cumulative incidence of 
aGVHD at 6 months (LMP7-Q/Q versus LMP7-Q/K and K/K genotype). 

Table 4 
Multivariate Cox-proportional hazard regression analysis of risk factors associ-
ated with aGVHD including LMP7 polymorphism.  

Factor p- 
value 

HR 95% CI 

Age (≥40 vs <40)  0.044  2.41 1.02–5.69 
Gender mismatch (female donor to male 

recipient) vs other combinations  
0.814  1.11 0.46–2.68 

Conditioning regimen (Bu/Cy, Fludarabine-based 
vs TBI/CY)  

0.254  3.21 0.43–23.89 

GVHD prophylaxis (CSA, MTX vs CSA, post-CY, 
MMF)  

0.019  11.70 1.48–92.07 

LMP7 (Q/Q vs Q/K and K/K)  0.087  2.36 0.88–6.31 

Bu, Busulfan; TBI, total body irradiation; CSA, Cyclosporine; MTX, metho-
trexate; post-CY, post-cyclophosphamide; MMF, Mycophenolate mofetil; HR, 
hazard ratio; CI, confidence interval. 

Fig. 3. Association between HA-1 disparity (HLA-A*02-unrestricted) and cu-
mulative incidence of aGVHD at 6 months (HA-1 disparity-HLA-A*02- 
unrestricted versus no disparity). 

Fig. 4. Association of the combined effect of HA-1 disparity (HLA-A*02-unre-
stricted) and LMP7 polymorphism with cumulative incidence of aGVHD at 6 
months (HA-1 disparity combined with LMP7- Q/Q genotype versus others). 
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4. Discussion 

Discrepancies have been reported in the association of disparities in 
the mHags between recipients and donors with transplantation 
outcome. The differential expression of the polymorphic mHags in the 
context of HLA molecules determines their disparity and can be modi-
fied by the immunoproteasomes that regulate their processing and 
presentation. We investigated the impact of LMP7 polymorphism on 
transplantation outcome, and examined its potential modifying effect on 
the hematopoeitic-restricted HA-1 and the broadly expressed HA-8 
mHags in matched related HSCT. 

In our cohort, HA-1 disparity was an independent risk factor for the 
development of aGVHD II–IV (p = 0.043, HR: 3.71, 95%CI =

1.04–13.26). Previous reports showed discrepancies in the association of 
HA-1 with aGVHD. A similar association with increased risk of aGVHD 
has been observed in Tunisian, Spanish, French, Swiss and American 
[31–35]. Despite the restricted expression of HA-1 in hematopoietic 
cells, the association with aGVHD has been attributed to its expression 
on the residual recipient antigen presenting cells in the aGVHD target 
tissues after AHSCT [22,32]. In HLA-A*02-unrestricted analysis, we 
could not find a significant association between the HA-1 disparity and 
aGVHD, in contrast to the data reported by Mutis et al. [35] in vitro. 
Alternatively, Spierings et al. [36] did not find a significant association 
between the HA-1 disparity and aGVHD in their multicenter study that 
included different ethnic groups. This was consistent with previous 
studies by Lin et al. [37] among Americans, Katageri et al. [38] in 
Japanese and Mutis et al. [39] in patients with CML from 20 European 
centers. The HA-8 disparity did not show a significant association with 
aGVHD in our cohort. The HA-8 disparity has been studied by fewer 
groups, Turpeinen et al. [40] did not reveal a significant association with 
aGVHD in Finnish, whereas Spierings et al. [36], reported an increased 
risk with HA-8 disparity in line with Akatsuka et al. [41] in Caucasians 
and Pérez-García et al. [42] in severe aGVHD in Spanish. 

In our study, LMP7-Q/Q genotype showed a trend toward an 
increased risk of developing aGVHD II- IV compared to the LMP7-Q/K 
and K/K genotypes in multivariate analysis adjusted for other risk fac-
tors (p = 0.087, HR:2.36, 95%CI = 0.88–6.31). Interestingly, in patients 
with HA-1 or HA-8 disparity, aGVHD developed exclusively in those 
with LMP7-Q/Q genotype. Moreover, in the combined analysis of mHags 
disparity and LMP7 polymorphism, HA-1-HLA-A*02-unrestricted 
disparity, showed a trend toward an increased risk of aGVHD when 
combined with LMP7-Q/Q genotype compared to LMP7-K/Q and K/K 
genotypes (p = 0.172 and p = 0.470, respectively). We also observed 
that despite the reported increased risk of development of GVHD with an 
increasing number of disparate mHags [21–43], patients with combined 
HA-1 and HA-8 disparities who did not develop aGVHD had the LMP7-K 
allele. The suggested association between LMP7 polymorphism and 
aGVHD is probably related to its role in the processing and presentation 
of peptides. Nicholls et al. [22] had elaborated on the possible role of the 
inflammation-induced immunoproteasome associated with the condi-
tioning regimen in mediating the HA-1-specific- immune response post 
ASCT. Lipopolysaccharide (LPS) that leaks from the gastrointestinal 
tract into the systemic circulation following tissue damage plays an 
important role in the initiation of aGVHD [44]. A study with cells 
derived from mouse model confirmed that overexpression of the LMP7 
in antigen-presenting cells as a result of LPS exposure and LMP7 
expression in peripheral target cells contributes to CD8+ T-cell auto- 
reactivity. This result indicates a different role for peptides derived 
from the immunoproteasome compared to those generated by the 
constitutive proteasome [45]. 

The association between LMP7 and aGVHD may also be linked to its 
role in promoting T cell differentiation into Th1 and Th17 and pro-
duction of proinflammatory cytokines namely TNF, IL-6, IL-17 and IL-23 
[16,46]. This goes in line with the reported association between the 
LMP7 polymorphism and T-cell mediated autoimmune and inflamma-
tory diseases, including juvenile rheumatoid arthritis and colitis 

[47,48]. Alternatively, Kang et al. [49], observed that the level of 
expression of MHC class I on the cell surface was associated with a defect 
in the LMP7 gene rather than LMP2, transporter associated with antigen 
processing (TAP1, TAP2), or HLA genes. LMP7-K allele may reduce the 
formation of immunoproteasome and hence peptide processing and 
presentation [25]. The potential modifying effect of LMP7 on the impact 
of HA-1 disparity rather than HA-8 is probably related to the mechanism 
of immunogenicity, which differs between the two peptides. 

Previous studies have suggested the use of proteasome and immu-
noproteasome inhibitors as a potential therapeutic modality for GVHD. 
The proteasome inhibitor bortezomib has been found to inhibit dendritic 
cells in addition to its immunomodulatory effects on alloreactive T cells 
and has been used as a GVHD prophylaxis [50,51]. However, delayed 
use of bortezomib posttransplantation has been associated with the 
aggravation of GVHD [52]. Other regimens combining posttransplant 
cyclophosphamide with the proteasome inhibitors bortezomib and ixa-
zomib have been suggested for GVHD prophylaxis and have shown 
promising results in human and animal models [53,54]. 

The selective LMP7 inhibitor ONX 0914 (epoxyketone inhibitor) 
improved GVHD in mHag disparate MCH matched transplantation in 
murine. Data suggested its role in regulating the allogeneic response 
mainly by reducing the presentation of mHag to cytotoxic CD8+ T cells 
and the production of cytokines [24]. Selective inhibition of LMP7 alters 
the differentiation of Th1 and Th17 cells and the secretion of proin-
flammatory cytokines, while promoting Treg cells and has shown a 
beneficial effect in autoimmune and inflammatory diseases 
[11,16,17,55]. ONX 0914 has also been shown to suppress LPS-induced 
secretion of proinflammatory cytokines using human and mouse- 
derived cells [55].In a mixed lymphocyte reaction (MLR) model using 
human cells, ONX-0914 was superior to the proteasome inhibitor CEP- 
18770 in suppressing cellular immunity. Since the MLR mainly repre-
sents a direct allorecognition model, this result may indicate a quanti-
tative effect of the immunoproteasome on antigen processing and 
subsequent presentation with MHC molecules on the cell surface [56]. 
Selective LMP7 inhibition is also expected to be associated with less 
toxicity than proteasome inhibition because of its selective expression in 
immune cells and under inflammatory conditions [55,56]. 

In our cohort, the HA-1 disparity and the LMP7-Q/Q genotype did 
not show a significant association with cGVHD despite their association 
with aGVHD. The lack of association between HA-1 disparity and 
cGVHD is consistent with previous studies [32,37–39,41,42]. We also 
did not report a significant association between HA-8 disparity and 
cGVHD in contrast to Turpeinen et al. [40] who found a significant as-
sociation with cGVHD in the absence of aGVHD. The combined analysis 
of the HA-1 or H-8 disparity with the LMP7 polymorphism also did not 
show an association with cGVHD. The lack of association between the 
LMP7 polymorphism and cGVHD can be attributed to the difference in 
immunobiology of cGVHD, which primarily involves Th2 cytokines 
rather than Th1. 

No association could be detected between the HA-1 disparity and 
RFS or OS in accordance with previous reports by Gallardo et al. and Lin 
et al. [32,37]. On the other hand, Mutis at al., [39] found a reduced risk 
of relapse in HA-1 disparate patients exclusively in those with aGVHD. 
This association has been translated into prolonged RFS and OS. In our 
cohort, the HA-8 disparity was also not associated with RFS or OS. A 
similar observation has been reported by Akatsuka et al. [41]. Contrary 
to our finding, the HA-8 disparity was associated with a reduced risk of 
relapse exclusively in those with aGVHD as reported by Spierings et al. 
[36], and resulted in prolonged RFS and OS. In another study, the HA-8 
disparity showed an association with reduced RFS and worse OS [42]. In 
our study, the LMP7 polymorphism was not associated with RFS or OS. 
The combined analysis of the HA-1 or H-8 disparity with the LMP7 
polymorphism also did not show an association with RFS or OS. The 
reported association between the LMP7 polymorphism and aGVHD 
rather than the GVL effect may be related to its role in promoting the 
differentiation of T cells into Th1 and Th17 and the production of 
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proinflammatory cytokines [57]. Finally, we also did not report any 
association between the HA-1 and HA-8 disparities and TRM in agree-
ment with other studies [37,41,42], nor between the LMP7 poly-
morphism and TRM. 

The low frequency of HA-1 and HA-8 disparities along with the small 
number of events in disparate patients and HLA presentation restrictions 
has limited the power of the study to detect statistically significant as-
sociations. Therefore, the possible significant association between HA-1 
and HA-8 disparities and other transplantation outcomes in the presence 
or absence of the LMP7 effect cannot be excluded and would merit 
further studies in larger patient cohorts. 

In conclusion, we reported an association between HA-1 disparity 
and an increased risk of developing aGVHD. To the best of our knowl-
edge, we have suggested for the first time an association between the 
LMP7 polymorphism and the risk of developing aGVHD. We have also 
highlighted the possible modifying effect of the LMP7 polymorphism on 
the presentation and the impact of mHags on the transplantation 
outcome that must be proven in a large cohort. Our suggestion paves the 
way for the study of variation in other genes involved in the processing 
and presentation of different mHags. This "research" may help existing 
comprehensive computational analysis models predict alloreactivity to 
mHags. 
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