| CAIRO UNIVERSITY                                                                  | Engineering Mechanics II.                                    |                          |                                                   |                  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|---------------------------------------------------|------------------|--|
| Faculty of Engineering                                                            |                                                              | Vibration Sheet          |                                                   |                  |  |
| Eng. Math. and Physics Department                                                 |                                                              | 2019-2020                |                                                   |                  |  |
| First Year students                                                               |                                                              | $g = 10 \text{ m/sec}^2$ |                                                   |                  |  |
| Problem No. (1): The shown square plate (m kg, L m)                               |                                                              | <u> </u>                 |                                                   |                  |  |
| is hinged at <b>A</b> and rest in equilibrium position. The plate is              |                                                              | A                        |                                                   |                  |  |
| displaced from the equilibrium position with sn                                   | nall angle <b>θ</b> °                                        |                          |                                                   |                  |  |
| and released.                                                                     |                                                              |                          |                                                   |                  |  |
| Change the correct angulars:                                                      |                                                              | L m                      |                                                   |                  |  |
| Choose the correct answers:                                                       | _                                                            |                          |                                                   |                  |  |
| Data                                                                              | m kg                                                         | L m                      | θ                                                 |                  |  |
|                                                                                   | 10                                                           | 1.5                      | 8                                                 |                  |  |
| No Required                                                                       | A                                                            | В                        | C                                                 | D                |  |
| 1 Type of plate motion                                                            | G.P.M                                                        | N.C.R.M                  | T.M                                               | C.R.M            |  |
| 2 Polar Moment of Inertia I <sub>A</sub> (kg.m²)                                  | 18.29                                                        | 15.00                    | 27.31                                             | 40.00            |  |
| 3 Natural Circular Freq. ω <sub>n</sub> (rad/sec)                                 | 2.66                                                         | 2.30                     | 2.75                                              | 2.57             |  |
| 4 Periodical Time τ (sec/cycle)                                                   | 2.44                                                         | 2.73                     | 2.36                                              | 2.28             |  |
| 5 Angular velocity at θ = 0 (rad/sec)                                             | 0.480                                                        | 0.371                    | 0.402                                             | 0.315            |  |
| 6 Vertical Reaction at $\theta = 0$ (N) 7 Horizontal Reaction at $\theta = 0$ (N) | 153.43<br>12                                                 | 143.20<br>0.00           | 161.79<br>50.23                                   | 101.46<br>200.00 |  |
| 8 Approx. Error in θ Calculations %                                               | 0.47                                                         | 0.51                     | 0.33                                              | 0.25             |  |
| Problem No.(2): The shown system is consists of a                                 |                                                              | 0.01                     | 141                                               | 0.20             |  |
| uniform rod AB (m kg, L m) and a particle B (n                                    |                                                              |                          | A                                                 |                  |  |
| 1                                                                                 | system is displaced from the equilibrium position with small |                          |                                                   |                  |  |
| angle $\mathbf{\theta}^{\circ}$ , then released.                                  |                                                              |                          | L                                                 | m                |  |
|                                                                                   |                                                              | B V                      |                                                   |                  |  |
| Choose the correct answers.                                                       |                                                              |                          |                                                   |                  |  |
| Data                                                                              | m kg                                                         | L m                      | θ                                                 |                  |  |
| No Boguirod                                                                       | 15                                                           | 3<br>B                   | 5<br>C                                            | <u> </u>         |  |
| No Required 9 Type of motion                                                      | A<br>G.P.M                                                   | T.M                      | R.T.M                                             | D<br>C.R.M       |  |
| 10 The dist. between A and G - AG (m)                                             | 2.250                                                        | 3.000                    | 3.375                                             | 2.025            |  |
| 11 Polar Moment of Inertia I <sub>A</sub> (kg.m <sup>2</sup> )                    | 324.00                                                       | 170.67                   | 180.00                                            | 97.20            |  |
| 12 Natural Circular Freq. $\omega_n$ (rad/sec)                                    | 2.041                                                        | 1.936                    | 1.677                                             | 1.581            |  |
| 13 Periodical Time τ (sec/cycle)                                                  | 3.078                                                        | 3.747                    | 3.974                                             | 3.245            |  |
| 14 Angular velocity at $\theta = 0$ (rad/sec)                                     | 0.178                                                        | 0.138                    | 0.169                                             | 0.146            |  |
| Problem No.(3): The shown guard tower with                                        |                                                              |                          |                                                   |                  |  |
| mass <b>m</b> is supported over <b>N</b> steel light cantilever                   |                                                              |                          | m                                                 |                  |  |
| columns. The loading test of a column by a horizontal                             |                                                              |                          |                                                   |                  |  |
| force <b>P</b> applied at its top causes displacement of <b>X</b> mm.             |                                                              |                          |                                                   |                  |  |
|                                                                                   |                                                              |                          |                                                   |                  |  |
| Change the correct anguers                                                        |                                                              |                          |                                                   |                  |  |
| Choose the correct answers.                                                       |                                                              |                          | / <del>////////////////////////////////////</del> | 7                |  |

| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m kg             | N                                                                                  | PΝ               | X mm          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------|------------------|---------------|
| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900              | 6                                                                                  | 80               | 2             |
| No Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Α                | В                                                                                  | С                | D             |
| 15 The horiz. stiff. of each col. k <sub>1</sub> (kN/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.23            | 40.00                                                                              | 10.00            | 16.67         |
| 16 The horiz. stiff. of the sys. $k_e$ (kN/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 240.00           | 70.00                                                                              | 115.38           | 83.33         |
| 17 Natural Circular Freq. ω <sub>n</sub> (rad/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.25            | 19.61                                                                              | 16.33            | 14.35         |
| <b>Problem No.(4):</b> A machine of mass <b>m kg</b> , is the center of two simply supported steel beam rectangular cross section ( <b>bxt cm</b> ) and length deflection at the beam center is given by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٨                | m                                                                                  |                  |               |
| $X = PL^3/48EI$ , $Es=2100 \text{ t/cm}^2$ , $I=Area M.I. = Area M.I. =$ | AL^2/12          | <del>m</del> m                                                                     | L m              | $\frac{1}{1}$ |
| Choose the correct answers :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | +                                                                                  |                  | <b></b>       |
| Dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m kg             | L m                                                                                | b cm             | t cm          |
| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2000             | 4                                                                                  | 6                | 12            |
| No Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Α                | В                                                                                  | С                | D             |
| 18 The vert. stiff. of each beam k <sub>1</sub> (kN/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1034.00          | 141.75                                                                             | 921.98           | 1134.00       |
| 19 The vert. stiff. of the system $k_e$ (kN/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2268.00          | 1843.97                                                                            | 2068.00          | 283.50        |
| 20 The natural freq. of the system (F) H <sub>z</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.58             | 5.12                                                                               | 5.36             | 2.45          |
| dashpot moves by a velocity of <b>v</b> due to the ap a force <b>P</b> .  Choose the correct answers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>, , ,</del> | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                              |                  |               |
| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m kg             | k1 kN/m                                                                            | v cm/sec         | ΡN            |
| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1500             | 160                                                                                | 2                | 100           |
| No Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Α                | В                                                                                  | С                | D             |
| 21 Natural Circular Freq. ω <sub>n</sub> (rad/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.00            | 14.61                                                                              | 11.38            | 18.26         |
| 22 Critical damping (kN.sec/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.82            | 80.00                                                                              | 54.77            | 45.54         |
| 23 Damping ratio D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.176            | 0.228                                                                              | 0.150            | 0.274         |
| 24 Damped frequency ω <sub>d</sub> (rad/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.56            | 11.21                                                                              | 14.22            | 19.77         |
| 25 Min. No. of dashpots to prevent Vibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14               | 12                                                                                 | 8                | 9             |
| Problem No.(6): The shown block m is connected four springs each of stiffness k and acted upon dynamic force given by:  F(t)= F <sub>o</sub> sin (Ωt)  Choose the correct answers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | $\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$ |                  |               |
| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m kg             | k kN/m                                                                             | F <sub>o</sub> N | Ω             |
| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500              | 200                                                                                | 400              | 35            |
| No Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Α                | В                                                                                  | С                | D             |

(kN/m)

(rad/sec)

26 Stiffness of the system ke

27 Natural Circular Freq. ω<sub>n</sub>

375.00

35.36

750.00

27.39

550.00

31.62

500.00 26.22

| 28 Magnification Factor MF                      | 4.44  | 1.58   | 3.57   | 3.24   |
|-------------------------------------------------|-------|--------|--------|--------|
| 29 Maximum block response X <sub>max</sub> (mm) | 2.94  | 3.56   | 1.26   | 2.38   |
| 30 Add. mass to reduce resp. by 40%             | 61.22 | 87.50  | N79    | 129.25 |
| 31 Spring stiff. to reduce resp. by 50%         | 55.00 | 152.00 | 216.00 | 155.00 |

**Problem No.(7)**: A mechanism **m** is supported on a light squire base **LxL** fixed in elastic ground as shown. The operation of the machine produces a dynamic vertical load given by:

## $F(t)=F_o \sin(\Omega t)$ N

The plate loading test using a force P=270 N measures average deflection of 3mm under plate (30x30 cm).



## Choose the correct answers:

| Data |                                                 | m kg    | L m     | F <sub>o</sub> N | Ω       |
|------|-------------------------------------------------|---------|---------|------------------|---------|
|      |                                                 | 800     | 2       | 400              | 35      |
| No   | Required                                        | Α       | В       | С                | D       |
| 32   | Stiffness of the system ke (kN/m)               | 2592.59 | 2518.52 | 740.74           | 1407.41 |
| 33   | Natural Circular Freq. ω <sub>n</sub> (rad/sec) | 44.02   | 30.43   | 41.94            | 40.25   |
| 34   | Magnification Factor MF                         | 3.10    | 1.84    | 2.38             | 3.44    |
| 35   | Max. vertical response X <sub>max</sub> (mm)    | 1.09    | 0.84    | 0.71             | 1.67    |
| 36   | Base mass to reduce resp. by 30%                | 101.59  | 125.40  | 83.71            | 241.27  |
| 37   | Base area to reduce resp. by 60%                | 0.74    | 2.06    | 2.26             | 1.47    |

**Problem No. (8):** An electric generator  $\mathbf{m}_1$  is supported on a base  $\mathbf{m}_2$ . The base is fixed in the ground by  $\mathbf{8}$  springs each of  $\mathbf{k}_1$  and  $\mathbf{4}$  dashpots each of damping factor  $\mathbf{C}_1$ . The operation of the generator produces a vertical dynamic force of:



## $F(t) = F_o \sin(\Omega t)$ N

Choose the correct answers in the following two cases:

Case (1): the dashpots are removed and the base mass  $m_2$  is chosen to make MF=0.5.

Case(2):  $m_2 = 500$  kg and the dashpot damping factor C1 is chosen to make MF=0.3.

| Data     |                                                 | $m_1$  | kg    | k <sub>1</sub> kN/m | F <sub>o</sub> N | Ω      |  |
|----------|-------------------------------------------------|--------|-------|---------------------|------------------|--------|--|
|          |                                                 | 1200   |       | 52.083333           | 300              | 25     |  |
| No       | Required                                        | А      |       | В                   | С                | D      |  |
| Case (A) |                                                 |        |       |                     |                  |        |  |
| 38       | Stiffness of the system ke (kN/m)               | 20     | 40.00 | 416.67              | 2613.33          | 720.00 |  |
| 39       | Natural Circular Freq. ω <sub>n</sub> (rad/sec) | 17.32  |       | 40.41               | 14.43            | 34.64  |  |
| 40       | Base mass (kg)                                  | 900.00 |       | 800.00              | 1200.00          | 850.00 |  |
| 41       | Max. vertical response X <sub>max</sub> (mm)    | 0      | .0383 | 0.2083              | 0.0980           | 0.3600 |  |
| Case (B) |                                                 |        |       |                     |                  |        |  |
| 42       | Natural Circular Freq. ω <sub>n</sub> (rad/sec) |        | 38.87 | 15.66               | 20.58            | 46.67  |  |
| 43       | Damp. Fact. of dashpot (kN.sec/m)               |        | 8.17  | 7.91                | 6.45             | 4.29   |  |
| 44       | Damp. Fact. of dashpot to stop free vib.        |        | 17.49 | 26.24               | 13.31            | 28.00  |  |