Rigid Body Dynamics Ch. 4: Vibration

Vibrations of Structural Systems

1) INTRODUCTION

The analysis of vibration is an important subjeat &€ngineers and it contains large
physical and mathematical knowledge. In this chapie study will be limited to simple
types of vibrations to describe the main concepth@subject.

Vibration is defined as the oscillatory motion ofRB or a system about its stable
equilibrium position as shown if Fig. (4.1).
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Fiqg. (4.1): Oscillatory Motion

Equilibrium is a mathematical concept means that th

forces acting on a system are in equilibrium angaéqns O

of equilibrium can be applied. However, stability &

physical concept means that the system will retariis

stable equilibrium position if it slightly displadeaway 0 O
from it as in case (a) in Fig. (4.2). However,hétsystem

is slightly displaced from the unstable equilibrium

position it will not return to it but will continuéo rest in  Eiq. (4.2): Equilibrium
the stable position as the case (b) shown in Big@)( Positions

a) Stable b) Unstable

Vibration is undesirable phenomenon because iteas®s the level of stresses in
structures due to the exerted inertia forces appéwn the structure dynamic state is
changed. Also, vibration causes energy losses ighimary operation and causes
damages for both heavy and sensitive machines.n®gceany high rise buildings and
light structures are constructed. These structares/ery sensitive to vibration and must
be designed to control the vibration amplitude lose levels suitable for the human
satisfaction.
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2) DEGREESOF FREEDOM

Degrees of freedom of a system are the minimum rundb variables required to
describe the system motion. As the number of vlesabequired for describing the
system motion increases, the mathematical treatroérthe system becomes more
complicated. Figure (4.3) shows systems with déifieidegrees of freedom.

X X1 X,
AW b
O o)

[}
1
I
1 7 r
0 ¥
1
P\ m !
m
SingleDegrees of Two Degrees of
Freedom system Freedom system
- x,
X
Lvandgl i
.Q —> X
I
~ r
¥ - X
|
I
Three Degrees of Four Degrees of
Freedom system Freedom system

Fig. (4.3): Systemswith Different Degrees of Freedom

In single degree of freedom system, only one végidk y or 8 is enough to define
position, velocity and acceleration of the RB, whih two degrees of freedom system
two variables are required and so on. The numbaealifedrential equations required to
study the system motion is equal to its degreeffedfdom. In this study, only single
degree of freedom systems will be studied.
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3) DYNAMIC LOADS

Dynamic loads (called excitations) are these forzglegse magnitude or direction or both
varies with time.
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Fiq. (4.4): Different Types of Dynamic L oads (Excitations)

Mathematically, the harmonic load is the simpleste do be dealt with in dynamic
analysis while other types need difficult treatmevibst of dynamic loads acting on
structure are in the form of harmonic load due tiom of the rotating parts in machines
and equipments. The harmonic load may be exprass&de or cosine form and totally
described by itsHp) amplitude and frequencydj. Actually, asFo or @ increases the

effect of the load increases. The harmonic load beagxpressed as:

F(t) =F,sinQt N 4.1)
F(t) = F,cosQt N (4.2)
where:

Fo Is the load amplitude which is the maximum (or imiom) value of the load.
Q is the circular frequency of the load which regamets the variation with time.
The ordinary frequency of load is given %Q/2n Hz (Hz =cycle per second)

Other types of non-harmonic loading can be tramsén to harmonics load by
mathematical methods &surier Transform.
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4) MODLING

Modeling are important tools widely used to soh@mnplex engineering problems, by
transforming a real structure to simple model tedtaves as the real structure to simplify
the mathematical treatments. The model must haee nilechanical properties and
dynamic behavior of the real structure. Simple ntiadeprocess is that in which many
springs in mass-spring system are replaced by auavaent spring. In vibration
analysis, most real structures can be modeled as-sming systems. In the following
cases, as system is displaced from stable equifibposition, internal force (called
restoring force) of the system will appear andttryeturn back the system to its stable
equilibrium position. This force is proportionalttee displacement of the system from its
equilibrium position due to the elasticity of theseem or gravity force. Following figures
in Fig. (4.5) show examples of modeling of diffarepstems.

Ky
ke
m = m
Real System Vibration Model
Ke=kit+k;

a) Replacing Two Parallel Springs by Equivalent Spring

Real System Vibration Model
- _kik,
¢k, + Kk,

b) Replacing Two Serial Springs by Equivalent Spring

X
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OneColumn | / Ke
N-Columns !
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Real Structure Loading Test Vibration Model
ki=Fa/ Xay ke=N ky

¢) Modeling Water Tank by Replacing N-Columns by Equivalent Spring
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d) Modeling Machine Resting on N-Beams by Equivalent Spring
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€) Modeling Machine Foundation by Equivalent Spring

Fig. (4.5): Modeling Real Structures by Simple Vibration Model

In above examples, real structures of single degifeeedom are represented by a
simple mass-spring system. In case (a) and (b) rmpriggs may be represented by one
spring of equivalent stiffness. In case (c), wallewated tank or guard tower supported
by cantilevemN-columns can be modeled by a mass-spring systeaquitalent stiffness
ke. A loading test is carried on one column to obttie column stiffness against
horizontal displacement. A horizontal forEds applied at the top of the column and the
displacemenk is measured many times using different forces tthéerent valued;
and the corresponding displacemg&ntan be obtained. Then, the average féigeand
the average displacemeq} can be calculated as:

* N N (4.3)
Hence, the stiffness of the equivalent spring ixioled as:
F
k, =—2 (4.4)
Xav

In case (d), machine vibrates in the vertical dicgcand similar procedures for loading
test in case (c) are carried out to obtain thewedemt stiffness of the vibration model.
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In case (e), a machine fitted with rectangular bagk area A,= AxB m) fixed in the
ground is represented by mass-spring system. Inctis®e a plate loading test with plate
of areaA, is carried out to obtain the plate stiffnelgs Then, the stiffness of the
equivalent spring can be calculated as:

_A
k. =—=k, (4.5)
A,
Example (1):

A machine supported on a rectangular base (2x3Thg.base is fixed in a rocky layer.
To measure the system stiffness, a plate loadistgigecarried out in the site where the
machine will be fitted using circular plate of diatar 0.3 m. The data of the load test are:

F(N) | 100 | 150 | 200| 300
x(mm)| 1.03| 1.48| 1.95 3.1

Calculate the system stiffness. Also, if the reeglistiffness of the system to control
vibration amplitude is 7200 kN/m, calculdtef a rectangular basé&X2L m) to be used.

Base Machine |C|rcular Plate | -
&— 7
m

<>
0.3m

2x3m Loading Test
Real Structure

Vibration M odel
k=(An/Ap) Kp

Solution:

a) The system stiffness

 Fu (XFIN)_3F
T ox (XXIN) XX

w D> FE=750N ,> x=7.65mm

k== _-98.04x10N = 98.04 KN/m
7.65x10°
k= xk,
A
*
0 k=23, 9804= 8321.9 kNIr
(7*0.314)
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b) The new base dimensions

ke=%xkP = [0 Ab=k%xA3

7200
OA =———x (*0.3°/4)=5.2 nt
A 98.04 ( )

A =Lx2L=22 =0 L= (A /2f°= (5.2/2§°= 1.61M

5) TYPESOF VIBRATIONS

There are two main types of vibration, free vilatand forced vibration:

5.1) Freevibration

In free vibration, the system is disturbed fromatpiilibrium position by a given initial
energy and then vibrates under the action of iterimal forces without any external
dynamic force. Example of free vibration is theraiiion of a mass-spring system when it
Is given an initial potential energy by displacedrom its equilibrium position and then
released. Also, another example of the free vibnatis the vibration of a simple
pendulum if it is given an initial velocity (kinetienergy) in its equilibrium position, it
will vibrate about its equilibrium position.

The system responsét) in free vibration is depending on the resistai€ the system
forces to movement (resistance or friction whicésghates the initial energy given to the
system). There are two cases, undamped free \dhratid damped free vibration.

Undamped Free Vibration

This is a theoretical case to introduce the mathiealareatment in a simple way. If no
resistance or friction is considered, then the esyswill keep the given initial given
energy without change (conservative system) andiraon to vibrate due to the change
between kinetic energy and potential energy, theaiéy to an infinite time as shown in
Fig. (4.6).

Vibration Model

Fig. (4.6): Undamped Free vibration
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Damped Free Vibration

This is the real case, where the resistance drdniof the system is usually acting on the
system. The resistance or friction will do negatwerk on the system and cause
dissipation of the given initial energy. The systert vibrate with decreasing amplitude
until it rests again after a time depending on\thkie of the resistance of the system to
movement as shown in Fig. (4.7).

x(t)

\\\ - ke
/\ [ NN t -

=2 - R@

Vibration Model

Fiqg. (4.7): Damped Free Vibration

5.2) Forced vibration

In the forced vibration, there are external dynafarce (excitation) acting on the system
and forced it to vibrate. Similar to free vibratjdhere are two types of forced vibration
based on the neglecting or considering the sysésistance to movement.

Undamped Forced Vibration

Neglecting the system resistance to movement wilpbfy the mathematical treatment
and produce approximate solution. In this casesyiséem will vibrate under the action of
the external dynamic force (excitation) with constamplitude as shown in Fig. (4.8).

x(t)
F()
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Fig. (4.8): Undamped Forced Vibration

Vibration M odel

Damped Forced Vibration

In real structures, when the system resistancediiomis considered the mathematical
solution becomes more difficult but the obtainetuson will be accurate. In this case,
the system will vibrate with variable amplitudesi®wn in Fig. (4.9).
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VAVALVAM =

_________ | Vibration Model

Transient state I Steady state

Fig. (4.9): Damped Forced Vibration

6) UNDAMPED FREE VIBRATIONS

The undamped free vibration model is shown in HgL0).

To study the system motion, assume the block isa at
distancex from its equilibrium position , derive the equation
of motion and solve it to obtain the responsg), the Fig. (4.10): Undamped

Free Vibration
velocity X (t) and the acceleratiox(t) of the block.

Equations of motion:

Since the block has a rectilinear translationaliomtthen its equations of motion reduces
to one equation ir-direction. DrawE.F.SandIl.F.Sas shown, the equation of motion is:

Equil. Pos. Equil. Pos.

| X ' X
1 3 1 >
1 1 .
kX - mXx
1 1
1 < 1 e
| |
1 1
1 1

External Force System Inertia Force System

Fiqg. (4.11): Mechanical Model of Undamped Free Vibration

Equations of motion:

(4.5)

- —k,x =mx

Rearrange the terms and dividerbyhen;

Ox +(£jx =0
m

k :
let:«f =—% (w, is called the natural frequnc
m
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Substitute in the above equation, the equation @tian can be obtained in the standard
form as:

X+afX =0 (4.6)

According to the theory of differential equatiorisg. (4.6) is a homogeneous linear
differential equation.E.) of the second order and its general solution bepbtained
by different methods.

The solution of aD.E. means obtaining a functiox(t) that satisfies the equation. By
inspection of Eq. (4.6), one can think that the2smn cosine function may be a solution
the equation, as these functions when differentgtivice give the same function.

Trying sin (at) or cos (ut) by substituting it into Eq.(4.6), one can findcaththese
functions satisfy the equation, then it may consalsolution. According to Theory of
D.E's, the general solution is a superpositiorheftivo functions, then:

X (t)=C,sin(wt)+C, costut ) 4.7)
whereC,; andC, are constants obtained from the initial conditi@ighe motion. The
initial condition for the given problem are onlydwases:

Case (1):

Displacing the block a distanéem from the equilibrium position and then releaseénth
the initial conditions are: &t0, x=A andvo=0, substitute into Eq. (4.7):

A =C;sin(0)+C, cos(0)=0C,=Am

Substituteagainin Eq.(3):

O x(t)=C ;sin(awt )+ A cosut ) (4.8)

Differentiate Eq. (4.8) with respect to tin¢ &nd substitute by the initial conditions:

X () =C,w, coswit )-Aw, sinut )

At t=0,X=0=00=C,w, cos(0)y O (4.9
=>0U0C,w =0 =>-w#0=0C,=0

Substitute by constan€, andC, in Eq. (4.7), the displacement of the RB as afion
of time (t), the velocity and the acceleration aléained as:

X(t)=Acosw.t) (4.10)
X () =-Aw,sin(wt) (4.11)
X(t)=-Aaf cos@t ) (4.12)
Case (2):
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Giving the block an initial velocityg from its equilibrium position, then the initial
conditions are ; at0, x=0 and X = v, substitute in Eq. (4.7):

0=C,sin(0)+C, cos(0)=0C,= 0Gn

Substituteagaininto Eq.(4.7),the response of theki®obtained as:

O x(t)=C ;sinwt) (4.13)
Differentiate Eq. (4.13) with respect to tinig §nd substitute by the initial conditions:
X(t)=C,w, cos@yt )

Vo =C,w, cos(0) = DClzv—o

n

Substitute by constan; in Eg. (4.13), the displacement of the RB as retion of time
(1), the velocity and the acceleration are obtaiagd

X (t) = [V—O]sin(%t ) (4.14)
,

X(t)=-Aw,cosyt ) (4.15)

X(t)=-Aafsin(@t) (4.16)

The characteristics of the machine vibration afendd by:

The natural circular frequnay, \E
m
The vibration frequncyF g’le (cicle/sec)
m

The periodical tim&@ sec/cicle (4.17

d_2r
Fw,

7) EXAMPLESOF UNDAMPED FREE VIBRATIONS

Example (2):

A machine (=100 kg) supported by connecting it to a wall

with three springsk;= 12 kKN/m, k;= 6 kKN/m andks= 4 K
kN/m as shown. The machine is mounted on two smoothy > = "4 | m
rollers to eliminate the friction with the floorf Ithe
machine is displaced by 10 cm to the right and then
released, study the subsequent motion.

o w— wll

Real Problen
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Solution:

Since the machine moves only in the horizontal
direction, it has one degree of freedom and itsonas m
totally described by, X and X. The machine can be

L J—
represented dynamically by a mass-spring system o
(vibration model) as shown, where: Vibration Model
*
k, = kﬁﬂ =0k, =12000+M)= 12006 240
K, + K, 6000+ 4000

=14400N /m= 14.4N

According to the above analysis, the equation dfiencof the machine is given by:
O X+144x=0
0 aﬁz%‘gole:Dwn:lZse'é @

According to case (a), Eq. (4.10 - 4.13):

The response of the machine, the velocity and teelaration as functions of time are
given by:

X(t) = Acos(12 F 0.1cos(12 ) (2)
x(t) =-1.2sin(12 ) (3)
X(t) = —14.40f cos(12 ) (4)

The characteristics of the machine vibration afendd by:
The natural circular frequnay, =12 Skc

The vibration frequncyF & 12 1.9z = 1.91ciclet
2T 2ir

The periodical timeT T:1—= = 0.524 sec/cicle

21T
@,
Also, the maximum displacement of the machine @tion amplitude), the maximum
velocity and the maximum acceleration are:

X e (the amplitude) = 0.1 m;
Vi =Xma= 1.2 m/sec ;

max

X . =14.4 m/sec
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