Dynamics of Rigid Body in Plane Motion

First Year Students - 2019-2020

Faculty of Engineering

Cairo University

MEC (112) - Sheet (3) - Equations of Motion

A force P = 350N, θ = 25° is applied to move the shown rectangular block (m = 80 kg, L = 1.5 m) which is supported on two rollers at A and B. Case 1: H=0.75L. Case 2: H=Hmaximum so that the block not tip over. Given g=10 m/s², Choose the correct answers

No		Required	A	В	С	D
1		The acceleration of the block	3.656	3.965	4.274	4.584
2	2002 1	Reaction at roller A [N]	392.7	320.7	272.7	344.7
3	case 1	Reaction at roller B [N]	353.1	309.7	396.4	331.4
4		The block velocity after 2 sec	7.93	7.433	9.421	8.427
5		H Maximum [m]	2.523	3.198	2.692	2.186
6	case 2	Reaction at roller A [N]	550	754.2	601	652.1
7		Reaction at roller B [N]	24.19	30.23	36.28	6.05

A force P = 350N, and an external moment M = 45N.M, is applied to move the shown block (m = 80 kg, BC = 9 m and AB = 1.5 m) on rough surface. The block is supported on two rollers at A and B. The friction coefficient is (μ =0.2). Case 1: h = 0.5*AB. Case 2: calculate hmin and hmax so that the block not tip over. Given g=10 m/s², Choose the correct answers

8		The acceleration of the block	2.71	2.375	2.208	2.04
9	Case 1	Reaction at roller A [N]	341.3	408.2	508.6	441.7
10		Reaction at roller B [N]	333.9	382.8	309.5	358.3
11	Coso 2	H Maximum [m]	3.221	2.45	2.643	2.064
12	Case 2	H Minimum [m]	-0.786	-0.63	-0.682	-0.838

In Problem 371, A uniform block ABCD (24 kg, Lx3L m, L=1.05) is loaded on two rollers on the back of the shown truck and connected in the cabinet by rod BE. Given θ =35 degrees, study the motion of the beam. Case (1): The truck starts motion with acceleration a=2.7 m/sec2 and the block not tip over. Case (2): The truck start motion with the max. accel. (a max.) so that the block not tip over. Assume g=10 m/s²

13 Case 14 (1)	The tension in the cable BE [N]	85.1	79.11	73.12	97.07
14 (1)	The normal reaction component at A [N]	193.3	171.8	161.1	204.1
15	The normal reaction component at D[N]	21.3	19.7	24.3	25.9
16	The max. acceleration of the truck [m/sec2]	2.651	3.561	4.016	3.333
17 Cas	The tension in the cable BE [N]	97.66	118.8	76.54	90.62
18 (2) 19	The normal reaction component at A [N]	296	356.9	336.6	255.5
19	The normal reaction component at D [N]	3.7	4.93	0	6.17

The shown plate ABCD (m=60kg, L=1.2m) is connected by three similar light rods AE, BH and BK (length=L, θ =45°). Choose the correct answers in the following cases. Case(1): If the cable KB is broken, choose at θ =90°. Case(2): the cable AE is broken, choose when BD became vertical. Assume g = 10 m/s^2

20)	The velocity of the point D	2.071	2.651	2.458	3.232
21	Case 1	The angular velocity of ωAE	2.058	1.906	2.209	2.513
22	Case 1	Ang. Accel. of αAE	27.24	54.49	68.11	13.62
23		The force in AE	369	511.3	475.7	546.9
24	Case 2	IB of the plate	153	117	126	144
25		Ang. velocity of the plate ω	2.855	2.486	1.932	3.04
26		The force in cable BH	618.4	670.9	776.1	933.7

In Problem 431, A uniform beam AB (24 kg, 1.05 m) is hinged at A and joined by a cable BC and connected by a rotational spring (k=18) at A, untwisted in the shown position (pos.1). The cable BC is suddenly breaks, choose the correct answers in the veridical position (pos. 2). Given g=10 m/s²

	8				
27	The ang. velocity of the rod in pos. (2) ω 2	4.509	4.167	4.851	3.825
28	The ang. acc. of the rod in pos. (2) \$alafa (c.c.w)	2.82	2.628	3.206	3.013
29	The reaction X at A [N]	46.27	34.52	49.21	40.39
30	The reaction Y at A [N]	412.9	495.3	619	536.6

The uniform 8kg bar AB (L=1.5m) shown is free to rotate in a vertical plane about a smooth pin at its end A. The body polar moment of Inertia Ig=1.5. The motion started when θ =30° with ω =2 rad/sec due to couple C=7.5Nm. Case(1) at initial condition, case(2) when θ reaches70° where g=10 m/s²

31	1	The total acceleration at G	8.549	7.482	9.083	8.015
32	Case 1	The total Reaction at A	64.75	69.37	60.13	73.99
33		Reaction angle with horizontal	162.4	141.3	120.2	172.9
34		ω	4.071	3.296	3.555	3.813
35	Case 2	The total acceleration at G	13.71	10.7	11.45	9.198
36		The total Reaction at A	150.9	196.9	162.4	139.5
37		Reaction angle with horizontal	94.2	118.2	134.3	110.2

In Problem 467, A uniform circular disc (m= 27 and r= 1.2) is connected to a rough hinge at A where there is a frictional moment M N.m/rad .The disc is pushed by an initial angular velocity ω 1=4 rad/sec (c.c.w) form the shown position (Pos.1) and its angular velocity when AB becomes horizontal (Pos. 2) is ω 1=1.4 rad/sec (c.c.w). Chose the correct answers. Given g=10 m/s²

38	I A for the disc [kg.m2]	58.32	53.93	49.54	71.49
		62.77	58.57	54.37	41.77
40	a the disc in pos. 2 (C.C.W.) [rad/sec2]	-5.667	-5.257	-6.488	-7.308
41	The horizontal reaction at A in pos. 2 [N]	50.6	59.2	63.5	76.41
42	The vertical reaction at A in pos. 2 [N]	55.06	45.59	50.32	59.79

A uniform rod AB (L=2.2 m, mass=25 kg, Ig=10.083kg m²) moves in a vertical plane and connected to spring (Lo =0.4 m). The rod is released from rest at θ = 60° so that $a_A = 1.5$ m/s² to the left. Assume g =10m/s², choose the correct answers just after starting the motion

43	aB Point B acceleration	1.053	0.742	0.866	0.99
44	α (C.W.) for Rod AB	0.787	0.911	0.726	0.973
45	NA Reaction at A	222.6	255.7	206.1	239.2
46	NB Reaction at B	56.82	62.63	91.68	68.44
47	K spring Stiffness	94.16	79.29	69.37	89.2