Applications of LP (Assignment problem)

Lecture 6

Introduction

- The **assignment problem** is a special type of linear programming problem where assignees are being assigned to perform tasks.
- For example, the assignees might be employees who need to be given work assignments.
- Assigning people to jobs is a common application of the assignment problem. However, the assignees need not be people. They also could be machines, or vehicles, or plants, or even time slots to be assigned tasks.

Assignment problem assumptions

- The number of assignees and the number of tasks are the same. (This number is denoted by *n*.)
- Each assignee is to be assigned to exactly *one task*.
- Each task is to be performed by exactly *one assignee*.
- There is a cost *cij* associated with assignee *i* (*i* = 1, 2, ..., *n*) performing task *j* (*j* = 1, 2, ..., *n*).
- The objective is to determine how all *n* assignments should be made to minimize the total cost.

Assignment problem model

By letting Z denote the total cost, the assignment problem model is

Minimize

$$Z = \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij},$$

subject to

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \text{for } i = 1, 2, \dots, n,$$
$$\sum_{i=1}^{n} x_{ij} = 1 \quad \text{for } j = 1, 2, \dots, n,$$

and

$$x_{ij} \ge 0$$
, for all *i* and *j*
(x_{ij} binary, for all *i* and *j*).

Network representation of the assignment problem

Example

			Canacity				
		1	2	3	4	Available	
Plant	1 2 3	41 40 37	27 29 30	28 — 27	24 23 21	75 75 45	
Production rate		20	30	30	40		

Can be solved by assignment model and a transportation mode, how?

Example

			-				
		1	2	3	4	5(D)	Supply
Source (Plant)	1 2 3	41 40 37	27 29 30	28 M 27	24 23 21	0 0 0	75 75 45
Demand		20	30	30	40	75	

				Task (Product	i)	
		1	2	3	4	5(D)
	1 <i>a</i>	820	810	840	960	0
	1 <i>b</i>	820	810	840	960	0
Assignee	2a	800	870	М	920	0
(Plant)	2b	800	870	М	920	0
	3	740	900	810	840	М