Lecture 1:

Introduction to LP theory and applications

What is Operations Research?

- World War II: British military leaders asked scientists and engineers to analyze several military problems
 - Deployment of radar
 - Management of convoy, bombing,
 antisubmarine, and mining operations.

What is Operations Research?

Operations Research (O.R.) is the discipline of applying advanced analytical methods to help make better decisions.

The value of Operation Research?

- Making sense of data
 - big data
 - social network info, transactional data, polls
- Dealing with complexity and uncertainty
 - understanding systems
 - making good choices in an uncertain world
- Using mathematical models to augment our own thinking.
 - develop insights
 - develop plans

Applications

Personal choices

- best career choices
- best use of our time
- best strategies

Company choices

- maximize value to shareholders
- determine optimal mix of products or services
- minimize production costs
- minimize cost of getting product to customers

Phases for implementing OR

Definition of the problem

This function should be carried out by the entire OR team.

Construction of the model

translate the problem definition into mathematical relationships.

Solution of the model

the use of well-defined optimization algorithm

Validation of model

– checks whether or not the proposed model does what it purports to do-that is, does it predict adequately the behaviour of the system under study?

The Optimization model

 A mathematical program is a linear program (LP) if the objective is a linear function and the constraints are linear equalities or inequalities.

e.g.,
$$3x_1 + 4x_2 - 3x_4 \ge 7$$

 $x_1 - 2x_5 = 7$

A <u>non-linear program</u> is permitted to have a non-linear objective and constraints.

- maximize f(x,y) = xy
- subject to x y²/2 ≥ 10
 3x 4y ≤ 2

$$x \ge 0, y \ge 0$$

The Optimization model

- **Decision variables:** the elements that are under the control of the decision maker.
- A single objective function (of the decision variables)
 - minimize cost
 - maximize return
 - make the last semester as enjoyable as possible

The Optimization model

• **Constraints:** restrictions on the decision variables

– "Business rules"

- no worker can work more than 5 consecutive days
- There is at most 2% investment in any stock in the portfolio

- "Physical laws"

- No worker can work a negative amount of time
- The amount of a goods in inventory at the end of period j is the amount of goods arriving during period j plus the amount of goods in inventory in period j-1 minus the amount of goods that are sold in the period.

Example

- A farm produces corn and soybeans from two raw materials (seeds and fertilizers)
- The daily usage of seeds is 6 kilo of per ton of corn and 4 kilo per ton soybean with daily availability of 24. The daily usage of fertilizers is 1 kilo of fertilizer per ton of corn and 2 tons per ton soybean with daily availability of 6
- The price of Corn is 5 thousand LE and the price of Soybean is 4 thousand LE

Properties of the LP Model

Proportionality

 This property requires the contribution of each decision variable in both the objective function and the constraints to be directly proportional to the value of the variable.

Additivity

 requires the total contribution of all the variables in the objective function and in the constraints to be the direct sum of the individual contributions of each variable.

Certainty

 All the objective and constraint coefficients of the LP model are deterministic (not stochastic LP and sensitivity analysis).