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ABSTRACT 
This paper deals with the estimation problem of reliability 𝑹 = 𝑷 𝒀 < 𝑿 < 𝒁 , where X, Y and Z are 

independently Weibull distribution with common known shape parameter but with different scale parameters, in 

presence of k outliers in strength X. The moment, maximum likelihood and mixture estimators of R are derived. 

An extensive computer simulation is used to compare the performance of the proposed estimators using 

MathCAD (14). Simulation study showed that the mixture estimators are better and easier than the maximum 

likelihood and moment estimators. 

Keywords-Maximum likelihood estimator, mixture estimator, moment estimator, outliers and Weibull 

distribution.

I. Introduction 
In the context of reliability the stress-strength 

model describes the life of a component which has a 

random strength X and is subjected to random stress 

Y. This problem arises in the classical stress–strength 

reliability where one is interested in estimating the 

proportion of the times the random strength X of a 

component exceeds the random stress Y to which the 

component is subjected. If X ≤ Y, then either the 

component fails or the system that uses the 

component may malfunction, and there is no failure 

when Y<X. The stress-strength models of the types 

P(Y<X), P(Y<X<Z) have extensive applications in 

various subareas of engineering, psychology, genetics, 

clinical trials and so on. [See,Kotz[1]]. 

The germ of this idea was introduced by 

Birnbaum [2] and developed by Birnbaum and 

McCarty [3]. An important particular case is 

estimation of R= P(Y<X<Z) which represents the 

situation where the strength  X  should not only be 

greater than stress Y  but also be smaller than stress Z. 

For example, many devices cannot function at high 

temperatures; neither can do at very low ones. 

Similarly, person's blood pressure has two limits 

systolic and diastolic and his/her blood pressure 

should lie within these limits. 

Chandra and Owen [4] constructed maximum 

likelihood estimators (MLEs) and uniform minimum 

unbiased estimators (UMVUEs) for R= P(Y<X< Z). 

Singh [5] presented the minimum variance unbiased, 

maximum likelihood and empirical estimators of R= 

P(Y<X<Z), where X, Y and Z are mutually 

independent random variables and follow the normal 

distribution. Dutta and Sriwastav[6] dealt with the 

estimation of R when X, Y and Z are exponentially 

distributed.  Ivshin[7] investigated the MLE and 

UMVUE of R when X, Y and Z are either uniform or 

exponential random variables with unknown location 

parameters. 

Wang et al. [8] make statistical inference for 

P(X<Y<Z) via two methods, the nonparametric 

normal approximation and the jackknife empirical 

likelihood, since the usual empirical likelihood 

method for U-statistics is too complicated to apply. 

The results of the simulation studies indicate that 

these two methods work promisingly compared to 

other existing methods. Some classical and real data 

sets were analyzed using these two proposed methods.  

The main aim of this article is to focus on the 

estimation of R= P(Y<X<Z), under the assumption 

that, X, Y and Z are independent.  The stresses Y and Z 

have Weibull distribution with common known shape 

parameter β and scale parameters α and θ 

respectively. While the strength X has Weibull 

distribution with known shape parameter β and scale 

parameter γ in presence of k outliers. Maximum 

likelihood estimator, moment estimator (ME) and 

mixture estimator (Mix) are obtained.  Monte Carlo 

simulation is performed for comparing different 

methods of estimation.  

The rest of the paper is organized as follows. In 

Section 2, the estimation of R= P(Y<X< Z) will be 

derived. The moment estimator of R derived in 

Section 3. Section 4 discussed MLE of R. The mixture 

estimator of R is obtained in Section 5.  Monte Carlo 

simulation results are laid out in Section 6. Finally, 

conclusionsare presented in Section 7. 
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II. Estimation of 𝑹 = 𝑷(𝒀 <  𝑋 <  𝑍) 
This Section deals with estimate the reliability of 

𝑅where Z, Y and X have Weibull distribution in the 

presence of k outliers in the strength X, such that X, Y 

and Z are independent. 

Let 𝑋 =  (𝑋1 ,𝑋2,… . . ,𝑋𝑛1
) is the strength of 𝑛1 

independent observations such that k of them are 

distributed Weibully with scale parameter 𝛿, shape 

parameter 𝛽and has the following probability density 

function (pdf), 

𝑓1 𝑥;  𝛿,𝛽 =
𝛽

𝛿
 
𝑥

𝛿
 
𝛽−1

𝑒− 
𝑥

𝛿
 
𝛽

𝑥 > 0,𝛽 >  0 𝑎𝑛𝑑 𝛿

>  0,                            (1) 

while the remaining  𝑛1 − 𝑘 random variables are 

distributed Weibully with scale parameter𝛾, known 

shape parameter 𝛽and has the following pdf, 

𝑓2 𝑥;  𝛾,𝛽 =
𝛽

𝛾
 
𝑥

𝛾
 
𝛽−1

𝑒
− 

𝑥

𝛾
 
𝛽

𝑥 > 0,

𝛽, 𝛾 >  0                                     (2) 

According to Dixit [9] and Dixit and Nasiri [10], 

the joint distribution of(𝑋1 ,𝑋2,… . . ,𝑋𝑛1
)in the 

presence of k outliers, can be expressed as 

𝑓𝑋 𝑥;  𝛾, 𝛿,𝛽 =
𝑘

𝑛

𝛽

𝛿
 
𝑥

𝛿
 
𝛽−1

𝑒− 
𝑥

𝛿
 
𝛽

+
 𝑛 − 𝑘 

𝑛

𝛽

𝛾
 
𝑥

𝛾
 
𝛽−1

𝑒
− 

𝑥

𝛾
 
𝛽

 

𝑥,𝛽, 𝛾, 𝛿 > 0                             (3) 

 

The corresponding cumulative distribution 

function (cdf)  

𝐹𝑋 𝑥;  𝛾, 𝛿,𝛽 = 𝑏  1− 𝑒− 
𝑥

𝛿
 
𝛽

 

+ 𝑏  1 − 𝑒
− 

𝑥

𝛾
 
𝛽

  ,                        (4) 

where 
𝑘

𝑛
= 𝑏,         

 𝑛 − 𝑘 

𝑛
= 𝑏,      and            𝑏 + 𝑏 = 1 

Let 𝑌 =  (𝑌1 ,𝑌2 ,… . . ,𝑌𝑛2
)  is the stress of 𝑛2 

independent observations of Weibull distribution with 

scale parameter𝛼, known shape parameter 𝛽and has 

the following pdf, 

𝑔𝑌 𝑦;𝛼,𝛽 =
𝛽

𝛼
 
𝑦

𝛼
 
𝛽−1

𝑒− 
𝑦

𝛼
 
𝛽

𝑦,𝛼,𝛽, > 0            (5) 

In addition, let  𝑍 =  (𝑍1 ,𝑍2,… . . ,𝑍𝑛3
)  is the 

stress of 𝑛3 independent observations of random Z 

with known shape parameter 𝛽 and scale 

parameter𝜃,and has the following pdf, 

𝑍 𝑧;  𝜃,𝛽 =
𝛽

𝜃
 
𝑧

𝜃
 
𝛽−1

𝑒− 
𝑧

𝜃
 
𝛽

                                   (6) 

According to Singh [5], the reliability 𝑅 =
𝑃(𝑌 < 𝑋 <  𝑍)  takes the following form 

𝑃 𝑌 <  𝑋 <  𝑍 =  𝐺𝑌 𝑥 𝐻𝑍 𝑥 
∞

−∞

𝑑𝐹𝑋 𝑥 ,    

where  𝐻𝑍 𝑥  is the cdf of Z at 𝑥, 𝐺𝑌 𝑥  is the cdf of Y 

at 𝑥 and 𝐻𝑍 𝑥  is the survival function of Z at 𝑥. 

Then, the reliability R in the presence of k outliers is 

given by  

𝑅 =   1 − 𝑒− 
𝑥

𝛼
 
𝛽

 𝑒− 
𝑥

𝜃
 
𝛽∞

0

 
𝑏𝛽

𝛿
 
𝑥

𝛿
 
𝛽−1

𝑒− 
𝑥

𝛿
 
𝛽

+
𝑏𝛽

𝛾
 
𝑥

𝛾
 
𝛽−1

𝑒
− 

𝑥

𝛾
 
𝛽

 𝑑𝑥 

𝑅

=
𝑏 𝛿𝜃2 𝛽

 𝛿𝛽 + 𝜃𝛽    𝜃𝛼 𝛽 +  𝛿𝛼 𝛽 +  𝛿𝜃 𝛽  

+
𝑏 𝛾𝜃2 𝛽

 𝛾𝛽 + 𝜃𝛽    𝜃𝛼 𝛽 +  𝛾𝛼 𝛽 +  𝛾𝜃 𝛽  
                    (7)   

Now to compute the estimate of R, the estimate 

of the parameters 𝛿,𝛼,𝜃 and 𝛾 must be obtained 

firstly. Three well known methods, namely, maximum 

likelihood, moments and mixture will be used to 

obtain the estimate of the parameters and will be 

discussed in details the following Sections. 

 

III. Moment Estimator of R 
In this Section, the moment estimator of R 

denoted by𝑅𝑀𝐸will be obtained. The moment 

estimators 𝜃 1,𝛼 1, 𝛾 1and𝛿 1 of the unknown 

parameters 𝜃,𝛼, 𝛾 and 𝛿 will be obtained by equating 

the population moments with the corresponding 

sample moments.  

The population means ofrandom stresses Y and Z 

are given by  

 

𝜇 𝑦 = 𝐸 𝑦 = 𝛼𝛤  
1

𝛽
+ 1 ,    

𝜇 𝑧 = 𝐸 𝑧 = 𝜃𝛤  
1

𝛽
+ 1  

In addition the first and second population 

moments of strength X are given by,  

𝜇 𝑥 =  𝑏𝛿 + 𝑏 𝛾 𝛤  
1

𝛽
+ 1 , 

𝜇2 
𝑥

=  𝑏𝛿2 + 𝑏 𝛾2 𝛤  
2

𝛽
+ 1 . 

Suppose that 𝑌 =   𝑌1 ,𝑌2,… . . ,𝑌𝑛2
 be a random 

sample of size 𝑛2 and 𝑍 =  (𝑍1 ,𝑍2,… . . ,𝑍𝑛3
) be a 

random sample of size 𝑛3drawn from Weibull 

distribution with known shape parameter 𝛽 and scale 

parameterα and 𝜃 respectively. Then the means of 

these samples are given by 

𝑦 =
1

𝑛2

  𝑦𝑖

𝑛2

𝑖=1

,                  𝑧 =
1

𝑛3

  𝑧𝑖

𝑛3

𝑖=1

 

Let 𝑋1 ,𝑋2,… . . ,𝑋𝑛1
  be a random sample of size 

𝑛1 drawn from Weibull distribution with known shape 

parameter 𝛽 and scale parameter𝛿, then the first and 

second sample moments are given by 

𝑚1
′ =

1

𝑛1

 𝑥𝑖

𝑛1

𝑖=1

,               𝑚2
′ =

1

𝑛1

 𝑥𝑖
2

𝑛1

𝑖=1

 

By equating the samples moments with the 

corresponding population moments, then  
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𝑦 = 𝛼𝛤  
1

𝛽
+ 1   , 𝑧 = 𝜃𝛤  

1

𝛽
+ 1 (8)  

 

𝑥 =  𝑏𝛿 + 𝑏 𝛾 𝛤  
1

𝛽
+ 1 (9) 

 

𝑚2
′ =  𝑏𝛿2 + 𝑏 𝛾2 𝛤  

2

𝛽
+ 1 (10) 

 

The moment estimator of 𝛼 and  𝜃 denoted by𝛼 1 

and 𝜃 1 can be obtained from (8), respectively as,   

𝛼 1 =
𝑦 

 𝛤  
1

𝛽
+ 1 

  , 𝜃 1 =
𝑧 

 𝛤  
1

𝛽
+ 1 

(11) 

 

The moment estimator of 𝛿 denoted by𝛿 1 can be 

obtained from (9) as follow  

𝛿 1 =
𝑥 

𝑏𝛤  
1

𝛽
+ 1 

−
𝑏 𝛾 1
𝑏

                   (12)   

 

Thus it must be first obtain the moment estimator 

of 𝛾 denoted by𝛾 1, by substitute (12) in (10), therefore 

𝑏  
𝑏 

𝑏
+ 1 𝛾 1

2 − 2
𝑏 𝑥 

𝑏 𝛤  
1

𝛽
+ 1 

𝛾 1

+

 
 
 
 
 

𝑥 2

𝑏  𝛤  
1

𝛽
+ 1  

2 −
𝑚2
′

𝛤  
2

𝛽
+ 1 

 
 
 
 
 

= 0 

Let 

𝜉1 = 𝑏  
𝑏 

𝑏
+ 1 ,𝜉2 = −2

𝑏 𝑥 

𝑏  𝛤
1

𝛽
+1

  and 𝜉3 =

𝑥 2

𝑏 𝛤(
1

𝛽
+1) 

2 −
𝑚2
′

𝛤(
2

𝛽
+1)

 

𝜉1𝛾 1
2 + 𝜉2𝛾 1 + 𝜉3 = 0 , 

if ∆= 𝜉2
2 − 4𝜉1𝜉3is non-negative then the roots are 

real. Therefore the moment estimator of 𝛾1 denoted 

by𝛾 1, takes the following form, 

𝛾 1 =
−𝜉2 +  𝜉2

2 − 4𝜉1𝜉3

2𝜉1

          (13) 

Hence the moment estimator 𝛿 1can be obtained 

by substitute (13)in (12). 

Finally, the moment estimator of𝑅, denoted by 

𝑅𝑀𝐸  is obtained by substitute 𝜃 1,𝛼 1, 𝛾 1and𝛿 1 in (7), 

therefore 𝑅𝑀𝐸    takes the following form, 

 𝑅𝑀𝐸

=
𝑏  𝛿 1𝜃 1

2
 
𝛽

 𝛿 1
𝛽

+ 𝜃 1
𝛽
   𝜃 1𝛼 1 

𝛽
+  𝛿 1𝛼 1 

𝛽
+  𝛿 1𝜃 1 

𝛽
 

+
𝑏  𝛾1𝜃 1

2
 
𝛽

 𝛾 1
𝛽 + 𝜃 1

𝛽
   𝜃 1𝛼 1 

𝛽
+  𝛾 1𝛼 1 

𝛽 +  𝛾 1𝜃 1 
𝛽
 

 (14) 

IV. Maximum Likelihood Estimator of R 

This Section deals with MLE of reliability 

𝑅 = 𝑃 𝑌 < 𝑋 < 𝑍 , when X, Y and Z are independent 

Weibull distribution with 

parameters  𝛽, 𝛿,𝛾 ,  𝛽,𝛼 and 𝛽,𝜃 respectively and 

the shape parameter  𝛽is known. To compute the 

MLE 𝑅𝑀𝐿𝐸  for 𝑅, firstly the MLEs𝜃 2,𝛼 2 , 𝛾 2and 𝛿 2 

must be obtained. The MLEs𝜃 2 ,𝛼 2 , 𝛾 2and 𝛿 2  of the 

parameters 𝜃,𝛼, 𝛾 and 𝛿 are the values which 

maximize the likelihood function. 

To obtain the maximum Likelihood estimator𝛼 2 

of𝛼, let 𝑌1 ,𝑌2,… . . ,𝑌𝑛2
 be a random sample of size 𝑛2 

drawn from Weibull distribution with parameters 

𝛽 𝑎𝑛𝑑 𝛼, the likelihood function of observed sample 

is given by 

 𝐿  𝛼,𝛽, 𝑦 = 𝛽𝑛2  
1

𝛼
 
𝑛2𝛽

𝑒−
  

𝑦𝑖
𝛼
 
𝛽𝑛2

𝑖=1    𝑦𝑖 
𝛽−1 

𝑛2

𝑖=1

 

The log-likelihood function 𝑙𝑛  𝐿  𝛼,𝛽, 𝑦   

denoted by 𝑙  is given by 

 

𝑙 = 𝑛2𝑙𝑛 𝛽 − 𝑛2𝛽 𝑙𝑛 𝛼−𝛼
−𝛽  𝑦𝑖 

𝛽

𝑛2

𝑖=1

+  𝛽 − 1  𝑙𝑛𝑦𝑖

𝑛2

𝑖=1

                 (15) 

 

The maximum likelihood estimate of 𝛼say𝛼 2, is 

obtained by setting the first partial derivatives of (15) 

to zero  

𝑑𝑙

𝜕𝛼
= −

𝑛2𝛽

𝛼 2

+ 𝛽𝛼 2
−𝛽−1   𝑦𝑖 

𝛽

𝑛2

𝑖=1

= 0 .  

Therefore, 

 

𝛼 2 =  
1

𝑛2

 𝑦𝑖
𝛽

𝑛2

𝑖=1

 

1

𝛽

(16) 

By the similar way, to obtain the maximum 

Likelihood estimator𝜃 2 of𝜃 , let 𝑍1,𝑍2,… . . ,𝑍𝑛3
 be a 

random sample of size 𝑛3 drawn from Weibull 

distribution with parameters𝛽 𝑎𝑛𝑑 𝜃, then𝜃 2 takes the 

following form 

𝜃 2 =  
1

𝑛3

 𝑧𝑖
𝛽

𝑛3

𝑖=1

 

1

𝛽

  .                      (17) 

To obtain the maximum Likelihood estimator 𝛿 2 

and𝛾 2 of𝛿2 𝑎𝑛𝑑 𝛾2, let 𝑋1 ,𝑋2,… . . ,𝑋𝑛1
 be a random 

sample of size 𝑛1drawn from Weibull distribution 

with presence of k outliers with parameters 𝛿 𝑎𝑛𝑑 𝛾, 
the likelihood function of observed sample can be 

written as 

𝐿 𝛿, 𝛾, 𝑥 ≡ 𝑙

=  
𝑏𝛽

𝛿𝛽
 
𝑛1

𝑒−
  

𝑥𝑖
𝛿
 
𝛽𝑛1

𝑖=1   𝑥𝑖
𝛽−1

𝑛1

𝑖=1

   𝜓 𝑥𝑖 ; 𝛿, 𝛾 

𝑛1

𝑖=1

 , 
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where,   𝜓 𝑥𝑖 ; 𝛿, 𝛾 = 1 +  
 𝑏 

𝑏
  

𝛿

𝛾
 
𝛽

𝑒
− 

1

𝛾𝛽
−

1

𝛿𝛽
 𝑥𝑖

𝛽

 

𝑙 = 𝑛1 ln 𝑏𝛽 − 𝑛1𝛽 𝑙𝑛𝛿 −
1

𝛿𝛽
 𝑥𝑖

𝛽

𝑛1

𝑖=1

+  𝛽 − 1  𝑙𝑛𝑥𝑖

𝑛1

𝑖=1

+ 𝑙𝑛𝜓 𝑥𝑖 ;𝛿, 𝛾                        (18)

𝑛1

𝑖=1

 

The first partial derivatives of the log–likelihood 

(18) with respect to 𝛿  𝑎𝑛𝑑  𝛾 are given, respectively 

by, 
𝑑𝑙

𝑑𝛿

=
−𝑛1𝛽

𝛿
+ 𝛽𝛿−𝛽−1  𝑥𝑖

𝛽

𝑛1

𝑖=1

+
𝑏 𝛽

𝑏𝛿
 
𝛿

𝛾
 
𝛽

 
(1 −  

𝑥𝑖

𝛿
 
𝛽

)𝑒
− 

1

𝛾𝛽
−

1

𝛿𝛽
 𝑥𝑖

𝛽

𝜓 𝑥𝑖 ; 𝛿, 𝛾 

𝑛1

𝑖=1

(19) 

𝑑𝑙

𝑑𝛾
=
𝑏 𝛽

𝑏𝛾
 
𝛿

𝛾
 
𝛽

 
  

𝑥𝑖

𝛾
 
𝛽

− 1 𝑒
− 

1

𝛾𝛽
−

1

𝛿𝛽
 𝑥𝑖

𝛽

𝜓 𝑥𝑖 ; 𝛿, 𝛾 

𝑛1

𝑖=1

 (20) 

MLE’s of𝛿 𝑎𝑛𝑑 𝛾 denoted by 𝛿 2 and𝛾 2 are 

solution to the system of equations obtained by setting 

the partial derivatives of the logarithm of likelihood 

function (19) and (20) to be zero.  Obviously, it is not 

easy to obtain a closed form solution to this system of 

equations. Therefore, an iterative method must be 

applied to solve this equation numerically to 

estimate𝛿 2,𝛾 2. The MLE of𝑅, denoted by  𝑅𝑀𝐿𝐸  is 

obtained by substitute𝜃 2,𝛼 2, 𝛿 2 𝑎𝑛𝑑 𝛾 2 in (7). 

 

V. Mixture Estimator of R 
To avoid the difficulty of complicated in the 

system of likelihood equations, the mixture estimator 

of R denoted by𝑅𝑀𝑖𝑥will be obtained. Following Read 

[11], the mixture estimator of 𝛼, 𝛾 and 𝛿 denoted 

by𝛼 3, 𝛾 3and 𝛿 3 will be derived by mixing between 

moment estimates and MLEs which are obtained 

previously in Sections 3 and 4.  

The mixture estimator of 𝜃 3,𝛼 3can be obtained 

from moment estimator as follows 

 

𝜃 3 =
𝑧 

 𝛤  
1

𝛽
+ 1 

,𝛼 3 =
𝑦 

 𝛤  
1

𝛽
+ 1 

                 (21) 

The mixture estimator of𝛿 3 𝑎𝑛𝑑 𝛾 3 can be obtained 

from likelihood estimators by substitute   as follows 

𝑑𝑙

𝑑𝛿

=
−𝑛1𝛽

𝛿 3
+ 𝛽𝛿 3

−𝛽−1
 𝑥𝑖

𝛽

𝑛1

𝑖=1

+
𝑏 𝛽

𝑏𝛿 3
 
𝛿 3
𝛾 3

 

𝛽

 
(1 −  

𝑥𝑖

𝛿 3
 
𝛽

)𝑒
− 

1

𝛾 3
𝛽−

1

𝛿 3
𝛽
 𝑥𝑖

𝛽

𝜓 𝑥𝑖 ; 𝛿 3,𝛾 3 

𝑛1

𝑖=1

= 0                                                                                    (22) 

𝑑𝑙

𝑑𝛾
=
𝑏 𝛽

𝑏𝛾 3

 
𝛿 3
𝛾 3

 

𝛽

 
  

𝑥𝑖

𝛾 3
 
𝛽

− 1 𝑒
− 

1

𝛾 3
𝛽−

1

𝛿 3
𝛽
 𝑥𝑖

𝛽

𝜓 𝑥𝑖 ; 𝛿 3,𝛾 3 

𝑛1

𝑖=1

= 0                                                                                    (23) 

The mixture estimator of𝑅, denoted by 𝑅𝑀𝑖𝑥   is 

obtained by substitute𝜃 3,𝛼 3, 𝛾 3and 𝛿 3in (7). 

 

VI. Numerical Illustration 
In this Section, an extensive numerical 

investigation will be carried out to compare the 

performance of the different estimators for different 

sample sizes and parameter values for Weibull 

distribution in the presence of k outliers. The 

investigated properties are biases and mean square 

errors (MSEs).All the computation is performed via 

MathCAD (14) statistical package. The algorithm for 

the 𝑅 = 𝑃 𝑌 < 𝑋 < 𝑍  parameter estimation can be 

summarized in the following steps: 

Step (1): Generate 1000 random 

samples𝑋1 ,…𝑋𝑛1
,𝑌1 ,…𝑌𝑛2

 and 𝑍1 ,…𝑍𝑛3
from 

Weibull distribution with the sample sizes; 

 𝑛1,𝑛2,𝑛3 = (15,15,15),(20,20,20),(25,25,25), 

(15,15,20), (15,15,25), (15,15,20), (15,25,20), 

(15,25,25), (20,15,15), (20,15,20), (20,15,25), 

(20,25,20), (20,25,25), (25,15,15), (25,15,20), 

(25,15,25), (25,20,20), (25,20,25). 

 

Step (2): The parameter values are selected 

as  𝑘 =  1,2 , 𝛽 = 2, 𝛼 =  0.5,1.5 , 𝛾 =
(2, 0.8) , 𝛿 = (0.5, 1.8) 𝑎𝑛𝑑 𝜃 =  2,2.5 . 
 

Step (3): The moment estimator of  𝜃and 𝛼are 

obtained by solving (11). ME of 𝛾is obtained 

numerically from (12). The ME of 𝛿 is obtained 

by substitute 𝛾 1 in (13). Once the estimate of 

these estimator are computed, then𝑅𝑀𝐸  will be 

obtainedusing (7). 

 

Step (4): The MLE of 𝛼 and 𝜃are obtained from 

(16) and (17). The nonlinear equations (19) and 

(20) of the MLEs will be solved iteratively using 

NetwonRaphson method.  The MLE of 𝑅 will be 

obtained by substitute the MLEs of 𝜃,𝛼, 𝛿and 𝛾 

in (7). 

 

Step (5): The mixture estimator of 𝜃 and 𝛼 are 

computed by using (21). NetwonRaphson method 

is used for solving (22) and (23), to obtain the 
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estimators of 𝛿 and 𝛾. The mixture estimator of 

𝑅 will be obtained by substitute 𝜃 3,𝛼 3𝛿 3 𝑎𝑛𝑑 𝛾 3 

in (7). 

 

Step (6):The performance of the estimators can 

be evaluated through some measures of accuracy 

which are Biases and MSEs of  𝑅. 
 

Simulation results are summarized in Tables 1-

4.From these Tables, the following conclusions can be 

observed on the properties of estimated parameters 

from R.  

1. The estimated value of 𝑅 increases as the 

value of outliers, 𝑘, increases. 

2. The estimated values of 𝑅 based on moment 

method is the smallest value, on the other 

hand the estimated values of 𝑅 based on 

mixture method is the highest one. 

3. The biases of  𝑅𝑀𝑖𝑥   are the smallest relative 

to the biases of 𝑅𝑀𝐿  and 𝑅𝑀𝐸 . 

4. Comparing the MSEs of all estimators, the 

mixture estimators perform the best 

estimator. 

5. The biases and MSEs of 𝑅 based on different 

estimators increase as the value of outliers 

increases in almost all cases expect for some 

few cases. 

 

VII. Conclusions 
This article considered the problem of estimating 

the reliability  𝑅 = 𝑃 𝑌 < 𝑋 < 𝑍  for the Weibull 

distribution with presence of k outliers in strength X. 

Assuming that, X,Y and Z are independent with 

common known shape parameter but with different 

scale parameters. The moment, maximum likelihood 

and mixture estimators of 𝑅are derived. Performance 

of estimators is usually evaluated through their biases 

and MSEs. 

Comparison study revealed that the mixture 

estimator works the best with respect to biases and 

MSEs, so the researcher strongly feels that mixture 

estimator is better and easy to calculate than the 

maximum likelihood and moment estimators.  

In general, the mixture method for estimating 

𝑅 = 𝑃 𝑌 < 𝑋 < 𝑍 of the Weibull distribution in the 

presence of k outliers issuggested to be used. 

 

Table 1: Estimates of R, Biases and MSE’s of the point estimates from Weibull Distribution, when 

𝑘 = 1, 𝛽 = 2, 𝛼 = 0.5, 𝛾 = 2 , 𝛿 = 0.5   𝑎𝑛𝑑       𝜃 = 2 

Sample Size Estimates of R Bias MSE 

(𝑛1 ,𝑛2 ,𝑛3)  𝑹𝑴𝑳  𝑹𝑴𝑬  𝑹𝑴𝒊𝒙 MLE Mom Mix MLE Mom Mix 

(15,15,15) 0.358 0.298 0.459 0.088 0.148 -0.013 0.073 0.112 0.019 

(20,20,20) 0.382 0.324 0.455 0.064 0.122 -0.009 0.066 0.123 0.017 

(25,25,25) 0.356 0.328 0.434 0.089 0.117 0.011 0.079 0.117 0.016 

(15,15,20) 0.356 0.311 0.434 0.090 0.135 0.012 0.068 0.129 0.021 

(15,15,25) 0.386 0.307 0.462 0.060 0.139 -0.016 0.073 0.122 0.015 

(15,20,20) 0.356 0.302 0.429 0.090 0.144 0.017 0.071 0.119 0.018 

(15,25,20) 0.349 0.297 0.455 0.097 0.149 -0.009 0.078 0.126 0.021 

(15,25,25) 0.354 0.309 0.461 0.092 0.137 -0.015 0.077 0.117 0.017 

(20,15,15) 0.359 0.293 0.428 0.087 0.153 0.018 0.074 0.122 0.016 

(20,15,20) 0.356 0.299 0.459 0.090 0.147 -0.013 0.075 0.119 0.024 

(20,15,25) 0.362 0.309 0.454 0.084 0.137 -0.008 0.069 0.111 0.018 

(20,25,20) 0.353 0.303 0.431 0.093 0.143 0.015 0.078 0.124 0.013 

(20,25,25) 0.354 0.317 0.460 0.092 0.129 -0.014 0.081 0.123 0.015 

(25,15,15) 0.355 0.307 0.436 0.090 0.138 0.009 0.082 0.119 0.023 

(25,15,20) 0.360 0.317 0.458 0.085 0.128 -0.013 0.076 0.114 0.019 

(25,15,25) 0.390 0.319 0.428 0.055 0.126 0.017 0.068 0.116 0.017 

(25,20,20) 0.348 0.312 0.456 0.097 0.133 -0.011 0.079 0.118 0.014 

(25,20,25) 0.387 0.318 0.458 0.058 0.127 -0.013 0.069 0.111 0.011 
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Table 2: Estimates of R, Biases and MSE’s of the point estimates from Weibull Distribution, when   

𝑘 = 2, 𝛽 = 2, 𝛼 = 0.5, 𝛾 = 2 , 𝛿 = 0.5   𝑎𝑛𝑑       𝜃 = 2 

Sample Size Estimates of R Bias MSE 
(𝑛1 ,𝑛2 ,𝑛3)  𝑹𝑴𝑳  𝑹𝑴𝑬  𝑹𝑴𝒊𝒙 MLE Mom Mix MLE Mom Mix 

(15,15,15) 0.378 0.333 0.467 0.067 0.112 -0.022 0.054 0.095 0.012 

(20,20,20) 0.368 0.322 0.464 0.077 0.123 -0.019 0.061 0.098 0.014 

(25,25,25) 0.377 0.336 0.462 0.068 0.109 -0.017 0.049 0.078 0.009 

(15,15,20) 0.376 0.334 0.422 0.069 0.111 0.023 0.052 0.082 0.014 

(15,15,25) 0.372 0.338 0.471 0.073 0.107 -0.026 0.059 0.095 0.013 

(15,20,20) 0.371 0.346 0.473 0.074 0.099 -0.028 0.058 0.097 0.016 

(15,25,20) 0.368 0.340 0.463 0.077 0.105 -0.018 0.062 0.095 0.012 

(15,25,25) 0.371 0.333 0.472 0.074 0.112 -0.027 0.061 0.098 0.009 

(20,15,15) 0.364 0.344 0.416 0.081 0.101 0.029 0.055 0.089 0.011 

(20,15,20) 0.376 0.331 0.424 0.069 0.114 0.021 0.064 0.096 0.014 

(20,15,25) 0.369 0.328 0.470 0.076 0.117 -0.025 0.059 0.097 0.011 

(20,25,20) 0.361 0.325 0.426 0.084 0.120 0.019 0.048 0.087 0.013 

(20,25,25) 0.379 0.327 0.467 0.066 0.118 -0.022 0.052 0.091 0.016 

(25,15,15) 0.370 0.341 0.420 0.075 0.104 0.025 0.061 0.092 0.011 

(25,15,20) 0.365 0.324 0.464 0.08 0.121 -0.019 0.056 0.090 0.010 

(25,15,25) 0.373 0.329 0.467 0.072 0.116 -0.022 0.051 0.087 0.013 

(25,20,20) 0.376 0.332 0.463 0.069 0.113 -0.018 0.057 0.088 0.009 

(25,20,25) 0.374 0.343 0.462 0.071 0.102 -0.017 0.053 0.087 0.011 

 

Table 3: Estimates of R, Biases and MSE’s of the point estimates from Weibull Distribution, when   

𝑘 = 1, 𝛽 = 2, 𝛼 = 1.5, 𝛾 = 0.8 , 𝛿 = 1.8  𝑎𝑛𝑑       𝜃 = 2.5 

Sample Size Estimates of R Bias  MSE 
(𝑛1 ,𝑛2 ,𝑛3)  𝑹𝑴𝑳  𝑹𝑴𝑬  𝑹𝑴𝒊𝒙 MLE Mom Mix MLE Mom Mix 

(15,15,15) 0.445 0.398 0.546 0.085 0.132 -0.016 0.071 0.088 0.023 

(20,20,20) 0.468 0.413 0.543 0.062 0.117 -0.013 0.073 0.084 0.031 

(25,25,25) 0.451 0.411 0.541 0.079 0.119 -0.011 0.072 0.073 0.028 

(15,15,20) 0.445 0.404 0.516 0.085 0.126 0.014 0.081 0.079 0.034 

(15,15,25) 0.456 0.399 0.540 0.074 0.131 -0.01 0.078 0.078 0.027 

(15,20,20) 0.447 0.395 0.518 0.083 0.135 0.012 0.076 0.091 0.039 

(15,25,20) 0.439 0.396 0.545 0.091 0.134 -0.015 0.073 0.087 0.028 

(15,25,25) 0.448 0.401 0.541 0.082 0.129 -0.011 0.071 0.083 0.034 

(20,15,15) 0.453 0.391 0.517 0.077 0.139 0.013 0.079 0.079 0.027 

(20,15,20) 0.447 0.393 0.521 0.083 0.137 0.009 0.084 0.088 0.036 

(20,15,25) 0.449 0.401 0.538 0.081 0.129 -0.008 0.079 0.090 0.031 

(20,25,20) 0.446 0.395 0.519 0.084 0.135 0.011 0.068 0.082 0.028 

(20,25,25) 0.444 0.398 0.547 0.086 0.132 -0.017 0.081 0.076 0.033 

(25,15,15) 0.448 0.402 0.516 0.082 0.128 0.014 0.087 0.084 0.027 

(25,15,20) 0.451 0.403 0.543 0.079 0.127 -0.013 0.086 0.079 0.030 

(25,15,25) 0.466 0.398 0.541 0.064 0.132 -0.011 0.075 0.081 0.029 

(25,20,20) 0.462 0.394 0.545 0.068 0.136 -0.015 0.079 0.086 0.018 

(25,20,25) 0.456 0.406 0.520 0.074 0.124 0.01 0.073 0.076 0.022 
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Table 4: Estimates of R, Biases and MSE’s of the point estimates from Weibull Distribution, when 

𝑘 = 2,              𝛽 = 2, 𝛼 = 1.5, 𝛾 = 0.8 , 𝛿 = 1.8    𝑎𝑛𝑑       𝜃 = 2.5 

Sample Size Estimates of R Bias  MSE 
(𝑛1 ,𝑛2 ,𝑛3)  𝑹𝑴𝑳  𝑹𝑴𝑬  𝑹𝑴𝒊𝒙 MLE Mom Mix MLE Mom Mix 
(15,15,15) 0.453 0.406 0.556 0.077 0.124 -0.026 0.074 0.076 0.019 

(20,20,20) 0.466 0.419 0.553 0.064 0.111 -0.023 0.071 0.064 0.018 

(25,25,25) 0.458 0.417 0.511 0.072 0.113 0.019 0.068 0.066 0.018 

(15,15,20) 0.449 0.408 0.516 0.081 0.122 0.014 0.076 0.081 0.015 

(15,15,25) 0.459 0.403 0.514 0.071 0.127 0.016 0.072 0.073 0.014 

(15,20,20) 0.456 0.405 0.548 0.074 0.125 -0.018 0.070 0.084 0.019 

(15,25,20) 0.447 0.406 0.542 0.083 0.124 -0.012 0.068 0.081 0.017 

(15,25,25) 0.453 0.402 0.513 0.077 0.128 0.017 0.064 0.089 0.015 

(20,15,15) 0.457 0.398 0.511 0.073 0.132 0.019 0.071 0.071 0.018 

(20,15,20) 0.451 0.399 0.509 0.079 0.131 0.021 0.079 0.082 0.014 

(20,15,25) 0.458 0.408 0.548 0.072 0.122 -0.018 0.074 0.077 0.019 

(20,25,20) 0.448 0.404 0.517 0.082 0.126 0.013 0.069 0.076 0.014 

(20,25,25) 0.449 0.401 0.543 0.081 0.129 -0.013 0.077 0.071 0.010 

(25,15,15) 0.459 0.412 0.553 0.071 0.118 -0.023 0.082 0.073 0.013 

(25,15,20) 0.458 0.409 0.517 0.072 0.121 0.013 0.081 0.075 0.017 

(25,15,25) 0.461 0.404 0.545 0.069 0.126 -0.015 0.074 0.081 0.011 

(25,20,20) 0.468 0.397 0.519 0.062 0.133 0.011 0.076 0.080 0.017 

(25,20,25) 0.461 0.408 0.514 0.069 0.122 0.016 0.071 0.077 0.015 
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