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Abstract: The alpha power transformed generalized Lomax (APTGL) distribution, a novel four-parameter lifespan 

distribution, is developed throughout this work.The APTGL distribution seems to be more adaptable than the 

generalized Lomax (GL) distribution. Moments (MOs), MO generating function (MOGF), quantile function (QF), and 

order statistics (OS) are some of the statistical features we discovered.The maximum likelihood (MLLi) approach is used 

to estimate the model parameters. Eventually, a real-world data set is utilized to demonstrate the APTGL distribution's 

versatility. 
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1. Introduction 

The Lomax (L) distribution having numerous applications, including actuarial science, economics, biology, engineering, lifespan, 

and dependability.It is indeed a subset of the second-order generalized beta distribution (Kleiber and Kotz, 2003). This model is 

thought to be beneficial in engineering and survival analysis as an alternate distribution for survival issues and life-testing. (see 

Hassan and Al-Ghamdi, 2009). 

 

Many researchers have investigated generalized and expanded variants of the L distribution; Examples include the following: beta 

L (BL) by Eugene et al (2004), Marshall Olkin extended L (Ghitany et al., 2007), exponentiated L (EL) (Abdel Moniem, 

2012),McDonald L (MCL) (Lemonte and Cordeiro, 2013), gamma-L (GL) (Cordeiro et al., 2013); Weibull-L (WL) (Tahir et al., 

2015), transmuted WL (Afify et al., 2015 b),Gumbel-L (Tahir et al., 2016), Power L (PL) (Rady et al., 2016),  EL geometric 

(Hassan and Abd-Allah, 2017), PL Poisson (Hassan and Nassr, 2018), exponentiated WL (Hassan and Abd-Allah, 2018),  inverse 

PL distribution (Hassan and Abd-Allah. 2018)  

The GL distribution's density (pdf) and distribution function (cdf) which established Abdul-Moniem and Abdel-Hameed (2012) is 

as regards: 

𝑔(𝑥; 𝜆, 𝜃, 𝛽) =
𝜃𝛽

𝜆
(1 +

𝑥

𝜆
)
−𝜃−1

(1 − (1 +
𝑥

𝜆
)
−𝜃

)

𝛽−1

   ,    𝑥, 𝜆, 𝜃, 𝛽 > 0,               (1) 

and 

                              𝐺(𝑥; 𝜆, 𝜃, 𝛽) = (1 − (1 +
𝑥

𝜆
)
−𝜃

)

𝛽

   ,    𝑥, 𝜆, 𝜃, 𝛽 > 0.                         (2) 
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The alpha power transformation (APT) approach was proposed by Mahdavi and Kundu (2017) to add an extra parameter to a 

family of distributions to enhance flexibility in that family.The APT- G family's cdf and pdf are available 

𝐹(𝑥; 𝛼) = [
𝛼𝐺(𝑥)−1

𝛼−1
                𝑖𝑓  𝛼 > 0, 𝛼 ≠ 1

𝐺(𝑥)                     𝑖𝑓       𝛼 = 1.          
,                                     (3) 

and  

𝑓(𝑥; 𝛼) = [
ln 𝛼

𝛼−1
𝑔(𝑥)𝛼𝐺(𝑥)   𝑖𝑓  𝛼 > 0, 𝛼 ≠ 1

𝑔(𝑥)                    𝑖𝑓    𝛼 = 1.          
.                                             (4) 

Many probability distributions in the literature have been generalized that use this strategy, for instance, APTWeibull (APTW) 

byDey et al. (2017a), APT G exponentialdistribution byDey et al. (2017b), APT Lindley by Dey et al. (2018), APT extended 

exponential byHassan et al. (2018), APT inverted exponential by Unal et al. (2018), APTinverse-W by Ramadan and Magdy 

(2018), APTinverse-Lindley byDey et al. (2018), APT power Lindley byHassan et al. (2019)and APT Pareto cited in Ihtisham et 

al. (2019).  

 The primary objective of this study is to present a different adaptable model known as the APT generalized Lomax 

(APTGL) distribution.Section 3 deduces several statistical characteristics of the APTGL distribution, as well as more appealing 

formulations for QF, median, MOs, and OS.In section 4, we use the MLLi technique of parameter estimation to estimate the 

parameters.In Section 5, a simulation study is conducted in order to determine the model parameters of the APTGL 

distribution.Section 6 examines one application to demonstrate the efficacy of the suggested approach. In section 7, there is a 

section titled "Final Remarks." 

2. The APTGL model 

The APTGL model for the random variable (RVr) X is indicated by APTGL(α,θ, λ, β)which having four-parameter, if X's pdf 

should be for𝑥 ≥ 0 is 

𝑓(𝑥) =

{
 
 

 
 𝜃𝛽 log (𝛼)

𝜆(𝛼 − 1)
(1 +

𝑥

𝜆
)
−𝜃−1

(1 − (1 +
𝑥

𝜆
)
−𝜃

)𝛽−1𝛼
(1− (1+

𝑥

𝜆
)
−𝜃
)

𝛽

𝑖𝑓  𝛼 ≠ 1, 𝛼, 𝜃, 𝜆, 𝛽 > 0

𝜃𝛽 

𝜆
(1 +

𝑥

𝜆
)
−𝜃−1

(1 − (1 +
𝑥

𝜆
)
−𝜃

)𝛽−1                                      𝑖𝑓 𝛼 = 1, 𝛼, 𝜃, 𝜆, 𝛽 > 0

(5) 

and 

𝐹(𝑥) =

{
 
 

 
 
𝛼
(1− (1+

𝑥

𝜆
)
−𝜃
)

𝛽

− 1

𝛼 − 1
𝑖𝑓  𝛼 ≠ 1 

(1 − (1 +
𝑥

𝜆
)
−𝜃

)

𝛽

𝑖𝑓  𝛼 = 1

(6) 

The APTGL distribution's survival function (sf) and hazard rate function (hrf) take the appropriate configurations. 

          𝑆(𝑥) =
𝛼 − 𝛼

(1− (1+
𝑥

𝜆
)
−𝜃
)

𝛽

𝛼 − 1
,                                                                                        
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and 

ℎ(𝑥) =

𝜃𝛽 log (𝛼)

𝜆
(1 +

𝑥

𝜆
)
−𝜃−1

(1 − (1 +
𝑥

𝜆
)
−𝜃

)𝛽−1𝛼
(1− (1+

𝑥

𝜆
)
−𝜃
)

𝛽

𝛼 − 𝛼
(1− (1+

𝑥

𝜆
)
−𝜃
)

𝛽    .                  

Figure 1 shows the pdf and hazard functions of the APTGL distribution for various values of α, θ, λ and β. Clearly, the pdf of 

APTGL distribution is decreasing, uni-modal and right skewed.The hrf of APTIL model can be decreasing and increasing. 

 

  

Figure 1.Plots of the pdf and hrf of the APTGL model 

 

3. Basic Properties of APTGL Model 

The statistical characteristics of the APTGL distribution are discussed in this section. 

3.1. Important expansions  

An explicit APTGL pdf formula is supplied here. Using the series structure shown below 

𝛼𝜗 =∑
(log 𝛼 )𝑖

𝑖!

∞

𝑖=0

𝜗𝑖 .                                                              (7)      

 

We may rewrite the pdf by adding (7) into (5). 

             𝑓(𝑥) =    ∑𝐴𝑖 (1 +
𝑥

𝜆
)
−𝜃−1

(1 − ( 1 +
𝑥

𝜆
)−𝜃)

𝛽(𝑖+1)−1∞

𝑖=0

,                        (8)      

where  𝐴𝑖 =
𝜃𝛽 (log( 𝛼 ))𝑖+1

𝜆𝑖!(𝛼−1)
. 

Using the appropriate binomial expansion 
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(1 − 𝑧)𝛽−1 =∑(−1)𝑗 (
𝛽 − 1

𝑗
)

∞

𝑗=0

𝑧𝑗  .                                 

Adding the preceding expansion to the equation (8) 

𝑓(𝑥) =   ∑ 𝑤𝑖,𝑗 (1 +
𝑥

𝜆
)
−𝜃(𝑗+1)−1

∞

𝑖,𝑗=0

 ,                                           (9)  

where  𝑤𝑖,𝑗 = 𝐴𝑖(−1)
𝑗 (𝛽(𝑖+1)−1

𝑗
). 

In addition, an expansion for [𝐹(𝑥)]ℎ is obtained, where h is an integer, and the binomial expansion is performed out once again. 

[𝐹(𝑥)]ℎ = ∑𝑆𝑧

∞

𝑧=0

( 1 +
𝑥

𝜆
)−𝜃𝑧 ,                                                                 (10) 

where, 

𝑆𝑧 = (
1

1 − 𝛼
)
ℎ

∑∑(−1)ℎ+𝑧 (
ℎ

𝑘
)

∞

𝑚=0

ℎ

𝑘=0

(
𝛽𝑚

𝑧
)
(log( 𝛼 ))𝑚 𝑘𝑚

𝑚!
. 

. 

3.2. Quantile Function: 

Through inverse equation (6), the generation from the APTGL distribution may be derived 

𝑥 = 𝜆 [(1 −
ln(𝛼𝑢 − 𝑢 + 1)

𝑙𝑛𝛼
)

1

𝛽

]

−1

𝜃

− 𝜆  .                                                      (11) 

If U ~ (0, 1) then X~ APTGL, the qth QF of APTGL is provided via 

𝑥𝑞 = 𝜆 [(1 −
ln( 𝛼𝑢 − 𝑢 + 1)

𝑙𝑛𝛼
)

1

𝛽

]

−1

𝜃

− 𝜆,                                                   (12) 

and the median may be computed as follows: 

𝑥0.5 = 𝜆 [(1 −
ln(0.5(𝛼 + 1))

𝑙𝑛𝛼
)

1

𝛽

]

−1

𝜃

− 𝜆,                                                               (13) 

 

3.3. Moments: 

Theorem 1: Assume that X be a RVr from APTGL model then its rthMO is 

𝜇́𝑟 = 𝜆
𝑟+1 ∑ 𝑤𝑖,𝑗𝐵(𝑟 + 1, 𝜃(𝑗 + 1) − 𝑟).

∞

𝑖,𝑗=0

                                                  (14)  

Proof:Assume that X be a RVrhaving pdf (5). The rthMOs of APTGL model are computed via 
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𝜇́𝑟 = ∫ 𝑥𝑟𝑓(𝑥;  α, 𝜃, 𝜆, 𝛽)𝑑𝑥
∞

0

 

Taking inspiration from (11) 

𝜇́𝑟 = ∫ ∑ 𝑤𝑖,𝑗𝑥
𝑟 (1 +

𝑥

𝜆
)
−𝜃(𝑗+1)−1

𝑑𝑥.

∞

𝑖,𝑗=0

∞

0

 

Let 𝑦 =
𝑥

𝜆
 

𝜇́𝑟 = 𝜆
𝑟+1∫ ∑ 𝑤𝑖,𝑗𝑦

𝑟(1 + 𝑦)−𝜃(𝑗+1)−1𝑑𝑦.

∞

𝑖,𝑗=0

∞

0

 

Then, 

𝜇́𝑟 = 𝜆
𝑟+1 ∑ 𝑤𝑖,𝑗𝐵(𝑟 + 1, 𝜃(𝑗 + 1) − 𝑟).

∞

𝑖,𝑗=0

 

  𝜇 = 𝜇́1 = 𝐸(𝑋) = 𝜆2 ∑ 𝑤𝑖,𝑗𝐵(2, 𝜃(𝑗 + 1) − 1).

∞

𝑖,𝑗=0

                                                       (15) 

The variance of the APTGL distribution may be readily calculated as follows: 

𝜎2 = 𝜇́2 − (𝜇́1)
2 = 𝜆3 ∑ 𝑤𝑖,𝑗𝐵(3, 𝜃(𝑗 + 1) − 2)

∞

𝑖,𝑗=0

− (𝜇́1)
2.                 (16) 

The MOGF of APTGL is investigated via 

𝑀𝑋(𝑡) =∑
𝑡𝑟

𝑟!

∞

𝑟=0

𝜇́𝑟 = 𝜆𝑟+1 ∑
𝑡𝑟

𝑟!
𝑤𝑖,𝑗𝐵(𝑟 + 1, 𝜃(𝑗 + 1) − 𝑟).

∞

𝑟,𝑖,𝑗=0

                              (17) 

3.4. The probability weighted moments: 

For a RVr 𝑋 the probability-weighted moments (PWMs), indicated by 𝜏𝑟,𝑠, may be computed using the following relationship 

𝜏𝑟,𝑠 = 𝐸(𝑋𝑟𝐹(𝑥)𝑠) = ∫ 𝑥𝑟𝑓(𝑥)
∞

−∞

𝐹(𝑥)𝑠𝑑𝑥                            (18) 

APTGL's PWMs are produced by inserting (9) and (10) into (18) and changing h by s, as shown below. 

𝜏𝑟,𝑠 =  ∑ ∫ 𝑤𝑖,𝑗𝑆𝑧𝑥
𝑟 (1 +

𝑥

𝜆
)
−𝜃(𝑧+𝑗+1)−1∞

0

∞

𝑖,𝑗,𝑧=0

 . 

Then, 

𝜏𝑟,𝑠 = 𝜆𝑟+1 ∑ 𝑤𝑖,𝑗𝑆𝑧

∞

𝑖,𝑗,𝑧=0

𝐵(𝑟 + 1, 𝜃(𝑧 + 𝑗 + 1) − 𝑟). 

3.5. Order Statistics: 
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Assume that𝑋1, 𝑋2, … , 𝑋𝑛 be random sample from the APTGL model with OS 𝑋(1), 𝑋(2), … , 𝑋(𝑛). The pdf of RVr X(r), (r = 1, 2, ..., 

n) is computed via 

𝑓𝑋(𝑟)(𝑥) =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
𝐹𝑟−1(𝑥)𝑓(𝑥)(1 − 𝐹(𝑥))

𝑛−𝑟
, 

The pdf of 𝑋(𝑟)can indeed be written simply 

𝑓𝑋(𝑟)(𝑥) =
𝑛!  𝜃𝛽 log (𝛼)𝜉1−

1

𝜃𝛼(1− 𝜉)
𝛽

𝜆(𝑟 − 1)! (𝑛 − 𝑟)! (𝛼 − 1)𝑛
(1 −  𝜉)𝛽−1 (𝛼(1− 𝜉)

𝛽
− 1)

𝑟−1

(𝛼 − 𝛼(1−𝜉)
𝛽
)
𝑛−𝑟

. 

where  (1 +
𝑏

𝑥
)
−𝑎

= 𝜉 . The pdf of the first and nth OS, in contrast, may be calculated directly using the preceding equation as 

follows: 

𝑓𝑋(1)(𝑥) =
𝑛 𝜃𝛽 log (𝛼)𝜉1−

1

𝜃𝛼(1− 𝜉)
𝛽

𝜆(𝛼 − 1)𝑛
(1 −  𝜉)𝛽−1 (𝛼 − 𝛼(1−𝜉)

𝛽
)
𝑛−1

 

and  

𝑓𝑋(𝑛)(𝑥) =
𝑛𝜃𝛽 log(𝛼) 𝜉1−

1

𝜃𝛼(1− 𝜉)
𝛽

𝜆(𝛼 − 1)𝑛
(1 −  𝜉)𝛽−1 (𝛼(1− 𝜉)

𝛽
− 1)

𝑛−1

. 

4. MLLi Estimation 

SupposeX1,…, Xnfeatures values derived from the APTGL distribution The (MLLiEs) of the postulated model parametersα, λ, θ 

and β and are determined through using log-likelihood function, marked byln 𝐿 

ln 𝐿 = 𝑛 ln 𝜃 +𝑛 ln𝛽

+ 𝑛 ln(𝑙𝑜𝑔𝛼) − 𝑛 ln(𝛼 − 1) − 𝑛𝑙𝑛 (𝜆) − (𝜃 +1)∑ln (1 +
𝑥

𝜆
) + (𝛽 − 1)∑𝑙𝑛 [1 − (1 +

𝑥𝑖
𝜆
)
−𝜃

]

𝑛

𝑖=1

𝑛

𝑖=1

+ 𝑙𝑛𝛼∑[1 − (1 +
𝑥𝑖
𝜆
)
−𝜃

]

𝛽𝑛

𝑖=1

 

 

The APTGL distribution's MLLi equations are provided via 

𝜕 ln 𝐿

𝜕𝛼
=

𝑛

𝛼 log𝛼
−

𝑛

𝛼 − 1
+
1

𝛼
∑[1 − (1 +

𝑥𝑖
𝜆
)
−𝜃

]

𝛽𝑛

𝑖=1

,                                     

 

𝜕 ln 𝐿

𝜕𝛽
=
𝑛

𝛽
+∑𝑙𝑛 [1 − (1 +

𝑥𝑖
𝜆
)
−𝜃

]+

𝑛

𝑖=1

ln 𝛼∑[1 − (1 +
𝑥𝑖
𝜆
)
−𝜃

]

𝛽

ln [1 − (1 +
𝑥𝑖
𝜆
)
−𝜃

]

𝑛

𝑖=1

 

𝜕 ln 𝐿

𝜕𝜃
=
𝑛

𝜃
−∑𝑙𝑛 (1 +

𝑥𝑖
𝜆
)+

𝑛

𝑖=1

(𝛽 − 1)∑
(1 +

𝑥𝑖

𝜆
)
−𝜃

ln (1 +
𝑥𝑖

𝜆
)

1 − (1 +
𝑥𝑖

𝜆
)
−𝜃

𝑛

𝑖=1

+  𝛽𝑙𝑛𝛼∑[1 − (1 +
𝑥𝑖
𝜆
)
−𝜃

]

𝛽−1𝑛

𝑖=1

(1 +
𝑥𝑖
𝜆
)
−𝜃

𝑙𝑛 (1 +
𝑥𝑖
𝜆
) 
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and 

𝜕 ln 𝐿

𝜕𝜆
=
−𝑛

𝜆
+ (𝜃 + 1)∑

𝑥𝑖

𝜆2

1 +
𝑥𝑖

𝜆

−

𝑛

𝑖=1

(𝛽 − 1)∑
𝜃 (1 +

𝑥𝑖

𝜆
)
−𝜃−1 𝑥𝑖

𝜆2
ln

1 − (1 +
𝑥𝑖

𝜆
)
−𝜃

𝑛

𝑖=1

+ 
𝛽𝜃𝑙𝑛𝛼

𝜆2
∑𝑥𝑖 [1 − (1 +

𝑥𝑖
𝜆
)
−𝜃

]

𝛽−1𝑛

𝑖=1

(1 +
𝑥𝑖
𝜆
)
−𝜃−1

 

Equating  l ,  l ,  l and  l to 0 and computing concurrently, we get the MLLiEs of α, λ, θ and β. 

5. Numerical outcomes 

We use a numerical analysis to compare the behavior of MLLiEs in this paper. From the APTGL distribution, we produce 1000 

random samples of size n =50, 100, 200, and 500.The parameters are divided into six groups, as follows:set1=(𝛼 = 0.5 , 𝜆 =
0.5, 𝛽 = 0.5, 𝜃 = 0.5), set2=(𝛼 = 0.5 , 𝜆 = 0.5, 𝛽 = 1.5, 𝜃 = 0.5),set3=(𝛼 = 0.5 , 𝜆 = 1.5, 𝛽 = 0.8, 𝜃 = 1.5), set4=(𝛼 = 0.5 , 𝜆 =
1.5, 𝛽 = 1.5, 𝜃 = 1.2), set5=(𝛼 = 0.5 , 𝜆 = 0.5, 𝛽 = 2, 𝜃 = 0.5) and set6=(𝛼 = 0.5 , 𝜆 = 0.5, 𝛽 = 2, 𝜃 = 1). The MLLiEs of 

𝛼, 𝜆, 𝛽 𝑎𝑛𝑑 𝜃are investigated. 

After that, the Es of MLLiapproach and their mean square errors (MSErs) are reveal in Tables 1 to 2. 

 

 

 

 

 

Table 1:MLLiEs and MSErs of APTGLmodel for set1, set2 and se3. 

Set3  Set2  Set1  

n 
MSErs MLLiEs MSErs MLLiEs MSErs MLLiEs 

0.47 0.762 0.147 0.317 0.105 0.428  

50 0.82 1.43 0.168 0.338 0.388 0.76 

0.112 0.916 2.041 2.421 0.023 0.54 

0.791 1.589 0.031 0.419 0.12 0.549 

0.241 0.802 0.137 0.217 0.058 0.42  

100 0.431 1.562 0.089 0.312 0.206 0.685 

0.023 0.789 0.61 2.1 9.928*10-3 0.526 

0.3 1.681 0.029 0.382 0.03 0.512 

0.096 0.709 0.117 0.243 0.043 0.368  

200 0.183 1.273 0.08 0.356 0.076 0.636 

9.246*10-3 0.808 0.466 1.959 3.67*10-3 0.519 

0.078 1.482 0.025 0.391 0.014 0.49 

0.065 0.696 0.117 0.201 0.042 0.343 

500 

0.15 1.225 0.052 0.346 0.065 0.697 

5.13*10-3 0.809 0.277 1.899 1.167*10-3 0.502 

0.048 1.45 0.024 0.38 4.146*10-3 0.493 
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Table 2:MLLiEs and MSErs of APTGL model for set4, set5 and se6. 

Set6 Set5 Set4 

n 
MSErs MLLiEs MSErs MLLiEs MSErs MLLiEs 

0.454 0.648 0.395 0.649 0.519 0.729  

50 1.712 0.817 0.457 0.673 1.544 1.207 

2.385 2.598 1.346 2.439 2.966 2.406 

1.753 1.194 0.021 0.501 0.402 1.219 

0.424 0.705 0.168 0.491 0.175 0.66  

100 0.219 0.591 0.096 0.576 0.448 1.124 

1.708 2.553 0.852 2.24 0.4 1.857 

0.074 1.02 0.011 0.481 0.172 1.136 

0.212 0.558 0.06 0.446 0.118 0.676  

200 0.102 0.606 0.127 0.626 0.288 1.135 

0.336 2.084 0.377 2.046 0.2 1.731 

0.038 0.994 6.113*10-3 0.484 0.073 1.138 

0.095 0.491 0.03 0.433 0.065 0.643 

500 

0.035 0.52 0.042 0.592 0.178 1.201 

0.169 2.088 0.187 1.951 0.084 1.619 

0.015 0.963 2.787*10-3 0.482 0.036 1.145 

 

 

6. Modelling 

In this part, we demonstrate the efficacy of APTGL distribution by modeling two data sets. Several writers have utilized this data 

to demonstrate the applicability of competing models. We also give a performance assessments of the models' goodness of fit and 

draw comparisons to other distributions.The measures of goodness of fit metrics such; Anderson-Darling(A∗) and Cramér- von 

Mises (W∗) are produced toexamine the fitted models. Generally, the lower values of these statistics is the better fit to the data.  

Aircraft Windshield Data 

Murthy et al. (2004) investigated the data set, which depicts the failure times for a certain windshield device. For this data, we will 

compare the APTGL distribution's fits to the relevant distributions: (GL), (BL), (EL), (McL), and (L).Table 3 shows the estimated 

parameters of these distributions as well as the related standard error (SE) for windshield data. Table 3 also includes the statistics 

A and W. Figure 2 depicts the fitted models' estimated pdf, cdf, sf, and PP graphs for Aircraft Windshield data. 
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Table 3:  Estimates, SE (in parentheses), A* and W* statistics for Aircraft Windshield data 

distribution Estimates and SE (in parentheses) A* W* 

APTGL(α, 

β, λ, θ) 

166.306 

(243.18) 

1.599 (0.59) 913.726 

(3891) 

931.133 

(3955) 

 0.6649 0.0666 

McL(a, b, c, 

α, β) 

2.1875 

(0.5211) 

119.1751 

(140.2970) 

12.4171 

(20.845) 

19.9243 

(38.96) 

75.661 

(147.242) 

0.6672 0.0858 

GL (a, α, β) 3.5876 

(0.5133) 

52001.5 

(7955) 

37029.658 

(81.164) 

  1.3666 0.1618 

BL(a, b, α, 

β) 

3.6036 

(0.619) 

33.6387 

(63.715) 

4.831 

(9.238) 

118.84 

(428.927) 

 1.4084 0.1680 

EL(a, α, β) 3.6261 

(0.624) 

20074.51 

(2041.826) 

26257.681 

(99.7417) 

  1.7435 0.2194 

L (α, β) 51425.35 

(5933.49) 

131789.78 

(2961198) 

- 

- 

  1.3976 0.1665 

 

 

 

 
Figure 2. Plots of estimated pdf, cdf, sf and pp plots for Aircraft Windshield data 

 

Table 3 and Figure 2 show that the APTGL gives us a better fit to the data and hence may be elected as the best model. 

 

 

 

 

7. Summary and Conclusions 

We suggested and investigated the APTGL distribution in this study. The APTGL distribution's structural characteristics are 

deduced.The MLLiEs technique of estimation is used to estimate the population parameters.A numerical outcomes is is conducted 

to assess the model parameters of the APTGL model. A real data collection is utilized in the application to demonstrate the 

versatility of the APTGL model. 
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