Publications

Export 69 results:
Sort by: Author Title Type [ Year  (Desc)]
2024
, "The burden of neurological conditions in north Africa and the Middle East, 1990-2019: a systematic analysis of the Global Burden of Disease Study 2019.", The Lancet. Global health, 2024. Abstract

BACKGROUND: The burden of neurological conditions in north Africa and the Middle East is increasing. We aimed to assess the changes in the burden of neurological conditions in this super-region to aid with future decision making.

METHODS: In this analysis of the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 data, we examined temporal trends of disability-adjusted life-years (DALYs; deaths and disabilities combined), deaths, incident cases, and prevalent cases of 14 major neurological conditions and eight subtypes in 21 countries in the north Africa and the Middle East super-region. Additionally, we assessed neurological DALYs due to 22 potentially modifiable risk factors, within four levels of classification, during the period 1990-2019. We used a Bayesian modelling estimation approach, and generated 95% uncertainty intervals (UIs) for final estimates on the basis of the 2·5th and 97·5th percentiles of 1000 draws from the posterior distribution.

FINDINGS: In 2019, there were 441·1 thousand (95% UI 347·2-598·4) deaths and 17·6 million (12·5-24·7) neurological DALYs in north Africa and the Middle East. The leading causes of neurological DALYs were stroke, migraine, and Alzheimer's disease and other dementias (hereafter dementias). In north Africa and the Middle East in 2019, 85·8% (82·6-89·1) of stroke and 39·9% (26·4-54·7) of dementia age-standardised DALYs were attributable to modifiable risk factors. North Africa and the Middle East had the highest age-standardised DALY rates per 100 000 population due to dementia (387·0 [172·0-848·5]), Parkinson's disease (84·4 [74·7-103·2]), and migraine (601·4 [107·0-1371·8]) among the global super-regions. Between 1990 and 2019, there was a decrease in the age-standardised DALY rates related to meningitis (-75·8% [-81·1 to -69·5]), tetanus (-88·2% [-93·9 to -76·1]), stroke (-32·0% [-39·1 to -23·3]), intracerebral haemorrhage (-51·7% [-58·2 to -43·8]), idiopathic epilepsy (-26·2% [-43·6 to -1·1]), and subarachnoid haemorrhage (-62·8% [-71·6 to -41·0]), but for all other neurological conditions there was no change. During 1990-2019, the number of DALYs due to dementias, Parkinson's disease, multiple sclerosis, ischaemic stroke, and headache disorder (ie, migraine and tension-type headache) more than doubled in the super-region, and the burden of years lived with disability (YLDs), incidence, and prevalence of multiple sclerosis, motor neuron disease, Parkinson's disease, and ischaemic stroke increased both in age-standardised rate and count. During this period, the absolute burden of YLDs due to head and spinal injuries almost doubled.

INTERPRETATION: The increasing burden of neurological conditions in north Africa and the Middle East accompanies the increasing ageing population. Stroke and dementia are the primary causes of neurological disability and death, primarily attributable to common modifiable risk factors. Synergistic, systematic, lifetime, and multi-sectoral interventions aimed at preventing or mitigating the burden are needed.

FUNDING: Bill & Melinda Gates Foundation.

TRANSLATIONS: For the Persian, Arabic and Turkish translations of the abstract see Supplementary Materials section.

Elmonem, M. A., N. A. Soliman, A. Moustafa, Y. Z. Gad, W. A. Hassan, T. Taha, G. El-Feky, M. Sakr, and K. Amer, "The Egypt Genome Project.", Nature genetics, 2024.
Amer, K., N. A. Soliman, S. Soror, Y. Z. Gad, A. Moustafa, M. A. Elmonem, M. Amer, A. Ragheb, A. M. I. R. A. KOTB, T. Taha, et al., "Egypt genome: Towards an African new genomic era.", Journal of advanced research, 2024. Abstract

BACKGROUND: Studying the human genome is crucial to embrace precision medicine through tailoring treatment and prevention strategies to the unique genetic makeup and molecular information of individuals. After human genome project (1990-2003) generated the first full sequence of a human genome, there have been concerns towards Northern bias due to underrepresentation of other populations. Multiple countries have now established national genome projects aiming at the genomic knowledge that can be harnessed from their populations, which in turn can serve as a basis for their health care policies in the near future.

AIM OF REVIEW: The intention is to introduce the recently established Egypt Genome (EG) to delineate the genomics and genetics of both the modern and Ancient Egyptian populations. Leveraging genomic medicine to improve precision medicine strategies while building a solid foundation for large-scale genomic research capacity is the fundamental focus of EG.

KEY SCIENTIFIC CONCEPTS: EG generated genomic knowledge is predicted to enrich the existing human genome and to expand its diversity by studying the underrepresented African/Middle Eastern populations. The insightful impact of EG goes beyond Egypt and Africa as it fills the knowledge gaps in health and disease genomics towards improved and sustainable genomic-driven healthcare systems for better outcomes. Promoting the integration of genomics into clinical practice and spearheading the implementation of genomic-driven healthcare and precision medicine is therefore a key focus of EG. Mining into the wealth of Ancient Egyptian Genomics to delineate the genetic bridge between the contemporary and Ancient Egyptian populations is another excitingly unique area of EG to realize the global vision of human genome.

Naguib, S., L. A. Mansour, N. A. Soliman, H. M. El-Hanafy, Y. A. Fahmy, M. A. Elmonem, and R. A. M. Halim, "Expanding the Genetic Spectrum of Gene Variants in Egyptian Patients with Primary Hyperoxaluria Type I.", Genetic testing and molecular biomarkers, vol. 28, issue 4, pp. 151-158, 2024. Abstract

Approximately 80% of primary hyperoxaluria cases are caused by primary hyperoxaluria type 1 (PH1, OMIM# 259900), which is characterized by pathogenic variants in the gene, resulting in deficiency of the liver-specific enzyme alanine-glyoxylate aminotransferase (AGT). This leads to increased production of oxalate, which cannot be effectively eliminated from the body, resulting in its accumulation primarily in the kidneys and other organs. This study included 17 PH1 Egyptian patients from 12 unrelated families, recruited from the Inherited Kidney Disease Outpatient Clinic and the Dialysis Units, Cairo University Hospitals, during the period from January 2018 to December 2019, aiming to identify the pathogenic variants in the gene. Six different variants were detected. These included three frameshift and three missense variants, all found in homozygosity within the respective families. The most common variant was c.121G>A;p.(Gly41Arg) detected in four families, followed by c.725dup;p.(Asp243GlyfsTer12) in three families, c.33dup;p.(Lys12Glnfs156) in two families, and c.731T >C;p.(Ile244Thr), c.33delC;p.(Lys12Argfs34), and c.568G>A;p.(Gly190Arg) detected in one family each. Consanguineous Egyptian families with history of renal stones or renal disease suspicious of primary hyperoxaluria should undergo genetic sequencing, specifically targeting exons 1 and 7, as variants in these two exons account for >75% of disease-causing variants in Egyptian patients with confirmed PH1.

, "Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021.", Lancet (London, England), 2024. Abstract

BACKGROUND: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.

METHODS: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.

FINDINGS: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.

INTERPRETATION: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere.

FUNDING: Bill & Melinda Gates Foundation.

, "Global fertility in 204 countries and territories, 1950-2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021.", Lancet (London, England), 2024. Abstract

BACKGROUND: Accurate assessments of current and future fertility-including overall trends and changing population age structures across countries and regions-are essential to help plan for the profound social, economic, environmental, and geopolitical challenges that these changes will bring. Estimates and projections of fertility are necessary to inform policies involving resource and health-care needs, labour supply, education, gender equality, and family planning and support. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 produced up-to-date and comprehensive demographic assessments of key fertility indicators at global, regional, and national levels from 1950 to 2021 and forecast fertility metrics to 2100 based on a reference scenario and key policy-dependent alternative scenarios.

METHODS: To estimate fertility indicators from 1950 to 2021, mixed-effects regression models and spatiotemporal Gaussian process regression were used to synthesise data from 8709 country-years of vital and sample registrations, 1455 surveys and censuses, and 150 other sources, and to generate age-specific fertility rates (ASFRs) for 5-year age groups from age 10 years to 54 years. ASFRs were summed across age groups to produce estimates of total fertility rate (TFR). Livebirths were calculated by multiplying ASFR and age-specific female population, then summing across ages 10-54 years. To forecast future fertility up to 2100, our Institute for Health Metrics and Evaluation (IHME) forecasting model was based on projections of completed cohort fertility at age 50 years (CCF50; the average number of children born over time to females from a specified birth cohort), which yields more stable and accurate measures of fertility than directly modelling TFR. CCF50 was modelled using an ensemble approach in which three sub-models (with two, three, and four covariates variously consisting of female educational attainment, contraceptive met need, population density in habitable areas, and under-5 mortality) were given equal weights, and analyses were conducted utilising the MR-BRT (meta-regression-Bayesian, regularised, trimmed) tool. To capture time-series trends in CCF50 not explained by these covariates, we used a first-order autoregressive model on the residual term. CCF50 as a proportion of each 5-year ASFR was predicted using a linear mixed-effects model with fixed-effects covariates (female educational attainment and contraceptive met need) and random intercepts for geographical regions. Projected TFRs were then computed for each calendar year as the sum of single-year ASFRs across age groups. The reference forecast is our estimate of the most likely fertility future given the model, past fertility, forecasts of covariates, and historical relationships between covariates and fertility. We additionally produced forecasts for multiple alternative scenarios in each location: the UN Sustainable Development Goal (SDG) for education is achieved by 2030; the contraceptive met need SDG is achieved by 2030; pro-natal policies are enacted to create supportive environments for those who give birth; and the previous three scenarios combined. Uncertainty from past data inputs and model estimation was propagated throughout analyses by taking 1000 draws for past and present fertility estimates and 500 draws for future forecasts from the estimated distribution for each metric, with 95% uncertainty intervals (UIs) given as the 2·5 and 97·5 percentiles of the draws. To evaluate the forecasting performance of our model and others, we computed skill values-a metric assessing gain in forecasting accuracy-by comparing predicted versus observed ASFRs from the past 15 years (2007-21). A positive skill metric indicates that the model being evaluated performs better than the baseline model (here, a simplified model holding 2007 values constant in the future), and a negative metric indicates that the evaluated model performs worse than baseline.

FINDINGS: During the period from 1950 to 2021, global TFR more than halved, from 4·84 (95% UI 4·63-5·06) to 2·23 (2·09-2·38). Global annual livebirths peaked in 2016 at 142 million (95% UI 137-147), declining to 129 million (121-138) in 2021. Fertility rates declined in all countries and territories since 1950, with TFR remaining above 2·1-canonically considered replacement-level fertility-in 94 (46·1%) countries and territories in 2021. This included 44 of 46 countries in sub-Saharan Africa, which was the super-region with the largest share of livebirths in 2021 (29·2% [28·7-29·6]). 47 countries and territories in which lowest estimated fertility between 1950 and 2021 was below replacement experienced one or more subsequent years with higher fertility; only three of these locations rebounded above replacement levels. Future fertility rates were projected to continue to decline worldwide, reaching a global TFR of 1·83 (1·59-2·08) in 2050 and 1·59 (1·25-1·96) in 2100 under the reference scenario. The number of countries and territories with fertility rates remaining above replacement was forecast to be 49 (24·0%) in 2050 and only six (2·9%) in 2100, with three of these six countries included in the 2021 World Bank-defined low-income group, all located in the GBD super-region of sub-Saharan Africa. The proportion of livebirths occurring in sub-Saharan Africa was forecast to increase to more than half of the world's livebirths in 2100, to 41·3% (39·6-43·1) in 2050 and 54·3% (47·1-59·5) in 2100. The share of livebirths was projected to decline between 2021 and 2100 in most of the six other super-regions-decreasing, for example, in south Asia from 24·8% (23·7-25·8) in 2021 to 16·7% (14·3-19·1) in 2050 and 7·1% (4·4-10·1) in 2100-but was forecast to increase modestly in the north Africa and Middle East and high-income super-regions. Forecast estimates for the alternative combined scenario suggest that meeting SDG targets for education and contraceptive met need, as well as implementing pro-natal policies, would result in global TFRs of 1·65 (1·40-1·92) in 2050 and 1·62 (1·35-1·95) in 2100. The forecasting skill metric values for the IHME model were positive across all age groups, indicating that the model is better than the constant prediction.

INTERPRETATION: Fertility is declining globally, with rates in more than half of all countries and territories in 2021 below replacement level. Trends since 2000 show considerable heterogeneity in the steepness of declines, and only a small number of countries experienced even a slight fertility rebound after their lowest observed rate, with none reaching replacement level. Additionally, the distribution of livebirths across the globe is shifting, with a greater proportion occurring in the lowest-income countries. Future fertility rates will continue to decline worldwide and will remain low even under successful implementation of pro-natal policies. These changes will have far-reaching economic and societal consequences due to ageing populations and declining workforces in higher-income countries, combined with an increasing share of livebirths among the already poorest regions of the world.

FUNDING: Bill & Melinda Gates Foundation.

, "Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021.", The Lancet. Neurology, vol. 23, issue 4, pp. 344-381, 2024. Abstract

BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.

METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.

FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378-521), affecting 3·40 billion (3·20-3·62) individuals (43·1%, 40·5-45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7-26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6-38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5-32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7-2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.

INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed.

FUNDING: Bill & Melinda Gates Foundation.

Veys, K., M. A. Elmonem, L. van den Heuvel, W. A. Gahl, and E. Levtchenko, "Plasma chitotriosidase enzyme activity as a novel therapeutic monitor for cysteamine treatment in nephropathic cystinosis: A retrospective validation study.", Molecular genetics and metabolism, vol. 142, issue 1, pp. 108454, 2024. Abstract

BACKGROUND: Cystine-depleting therapy in nephropathic cystinosis is currently monitored via the white blood cell cystine assay, although its application and usefulness are limited by practical and technical issues. Therefore, alternative biomarkers that are widely available, more economical and less technically demanding, while reliably reflecting long-term adherence to cysteamine treatment, are desirable. Recently, we proposed chitotriosidase enzyme activity as a potential novel biomarker for the therapeutic monitoring of cysteamine treatment in cystinosis. In this study, we aimed to validate our previous findings and to confirm the value of chitotriosidase in the management of cystinosis therapy.

MATERIALS & METHODS: A retrospective study was conducted on 12 patients treated at the National Institutes of Health Clinical Center and followed up for at least 2 years. Plasma chitotriosidase enzyme activity was correlated with corresponding clinical and biochemical data.

RESULTS: Plasma chitotriosidase enzyme activity significantly correlated with WBC cystine levels, cysteamine total daily dosage and a Composite compliance score. Moreover, plasma chitotriosidase was a significant independent predictor for WBC cystine levels, and cut-off values were established in both non-kidney transplanted and kidney transplanted cystinosis patients to distinguish patients with a good versus poor compliance with cysteamine treatment. Our observations are consistent with those of our previous study and validate our findings.

CONCLUSIONS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients.

SYNOPSIS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients.

Maroofian, R., P. Sarraf, T. J. O'Brien, M. Kamel, A. Cakar, N. Elkhateeb, T. Lau, S. J. Patil, C. J. Record, A. Horga, et al., "Reticulon 2 deficiency results in an autosomal recessive distal motor neuropathy with lower limb spasticity.", Brain : a journal of neurology, 2024. Abstract

Heterozygous RTN2 variants have been previously identified in a limited cohort of families affected by autosomal dominant spastic paraplegia (SPG12-OMIM:604805) with a variable age of onset. Nevertheless, the definitive validity of SPG12 remains to be confidently confirmed due to scarcity of supporting evidence. In our study, we identified and validated seven novel or ultra-rare homozygous loss-of-function RTN2 variants in 14 individuals from seven consanguineous families with distal hereditary motor neuropathy (dHMN) using exome, genome and Sanger sequencing coupled with deep-phenotyping. All affected individuals (seven males and seven females, aged 9-50 years) exhibited weakness in the distal upper and lower limbs, lower limb spasticity, hyperreflexia, with an onset in the first decade of life. Nerve conduction studies revealed axonal motor neuropathy with neurogenic changes in the electromyography. Despite a slowly progressive disease course, all patients remained ambulatory over a mean disease duration of 19.71 ± 13.70 years. Characterisation of C. elegans RTN2 homolog loss-of-function variants demonstrated morphological and behavioural differences compared to the parental strain. Treatment of the mutant with an endoplasmic/sarcoplasmic reticulum Ca2+ reuptake inhibitor (2,5-di-tert-butylhydroquinone) rescued key phenotypic differences, suggesting a potential therapeutic benefit for RTN2-disorder. Despite Reticulon-2 being an endoplasmic reticulum (ER)-resident membrane shaping protein, our analysis of patient fibroblast cells did not find significant alterations in ER structure or the response to ER stress. Our findings delineate a distinct form of autosomal recessive dHMN with pyramidal features associated with Reticulon-2 deficiency. This phenotype shares similarities with SIGMAR1-related dHMN, and Silver-like syndromes, providing valuable insights into the clinical spectrum and potential therapeutic strategies for RTN2-related dHMN.

2023
Lazarus, J. V., H. Han, H. E. Mark, S. A. Alqahtani, J. M. Schattenberg, J. B. Soriano, T. M. White, S. Zelber-Sagi, and A. M. Dirac, "The global fatty liver disease Sustainable Development Goal country score for 195 countries and territories.", Hepatology (Baltimore, Md.), vol. 78, issue 3, pp. 911-928, 2023. Abstract

BACKGROUND AND AIMS: Fatty liver disease is highly prevalent, resulting in overarching wellbeing and economic costs. Addressing it requires comprehensive and coordinated multisectoral action. We developed a fatty liver disease Sustainable Development Goal (SDG) country score to provide insights into country-level preparedness to address fatty liver disease through a whole-of-society lens.

APPROACH AND RESULTS: We developed 2 fatty liver disease-SDG score sets. The first included 6 indicators (child wasting, child overweight, noncommunicable disease mortality, a universal health coverage service coverage index, health worker density, and education attainment), covering 195 countries and territories between 1990 and 2017. The second included the aforementioned indicators plus an urban green space indicator, covering 60 countries and territories for which 2017 data were available. To develop the fatty liver disease-SDG score, indicators were categorized as "positive" or "negative" and scaled from 0 to 100. Higher scores indicate better preparedness levels. Fatty liver disease-SDG scores varied between countries and territories (n = 195), from 14.6 (95% uncertainty interval: 8.9 to 19.4) in Niger to 93.5 (91.6 to 95.3) in Japan; 18 countries and territories scored > 85. Regionally, the high-income super-region had the highest score at 88.8 (87.3 to 90.1) in 2017, whereas south Asia had the lowest score at 44.1 (42.4 to 45.8). Between 1990 and 2017, the fatty liver disease-SDG score increased in all super-regions, with the greatest increase in south Asia, but decreased in 8 countries and territories.

CONCLUSIONS: The fatty liver disease-SDG score provides a strategic advocacy tool at the national and global levels for the liver health field and noncommunicable disease advocates, highlighting the multisectoral collaborations needed to address fatty liver disease, and noncommunicable diseases overall.

Collaborators., G. B. D. D. 2021, "Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021.", Lancet (London, England), 2023. Abstract

BACKGROUND: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050.

METHODS: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively.

FINDINGS: In 2021, there were 529 million (95% uncertainty interval [UI] 500-564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8-6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7-9·9]) and, at the regional level, in Oceania (12·3% [11·5-13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1-79·5) in individuals aged 75-79 years. Total diabetes prevalence-especially among older adults-primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1-96·8) of diabetes cases and 95·4% (94·9-95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5-71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5-30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22-1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1-17·6) in north Africa and the Middle East and 11·3% (10·8-11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%.

INTERPRETATION: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.

FUNDING: Bill & Melinda Gates Foundation.

Collaborators, G. B. D. S. C. D. 2021, "Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000-2021: a systematic analysis from the Global Burden of Disease Study 2021.", The Lancet. Haematology, 2023. Abstract

BACKGROUND: Previous global analyses, with known underdiagnosis and single cause per death attribution systems, provide only a small insight into the suspected high population health effect of sickle cell disease. Completed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study delivers a comprehensive global assessment of prevalence of sickle cell disease and mortality burden by age and sex for 204 countries and territories from 2000 to 2021.

METHODS: We estimated cause-specific sickle cell disease mortality using standardised GBD approaches, in which each death is assigned to a single underlying cause, to estimate mortality rates from the International Classification of Diseases (ICD)-coded vital registration, surveillance, and verbal autopsy data. In parallel, our goal was to estimate a more accurate account of sickle cell disease health burden using four types of epidemiological data on sickle cell disease: birth incidence, age-specific prevalence, with-condition mortality (total deaths), and excess mortality (excess deaths). Systematic reviews, supplemented with ICD-coded hospital discharge and insurance claims data, informed this modelling approach. We employed DisMod-MR 2.1 to triangulate between these measures-borrowing strength from predictive covariates and across age, time, and geography-and generated internally consistent estimates of incidence, prevalence, and mortality for three distinct genotypes of sickle cell disease: homozygous sickle cell disease and severe sickle cell β-thalassaemia, sickle-haemoglobin C disease, and mild sickle cell β-thalassaemia. Summing the three models yielded final estimates of incidence at birth, prevalence by age and sex, and total sickle cell disease mortality, the latter of which was compared directly against cause-specific mortality estimates to evaluate differences in mortality burden assessment and implications for the Sustainable Development Goals (SDGs).

FINDINGS: Between 2000 and 2021, national incidence rates of sickle cell disease were relatively stable, but total births of babies with sickle cell disease increased globally by 13·7% (95% uncertainty interval 11·1-16·5), to 515 000 (425 000-614 000), primarily due to population growth in the Caribbean and western and central sub-Saharan Africa. The number of people living with sickle cell disease globally increased by 41·4% (38·3-44·9), from 5·46 million (4·62-6·45) in 2000 to 7·74 million (6·51-9·2) in 2021. We estimated 34 400 (25 000-45 200) cause-specific all-age deaths globally in 2021, but total sickle cell disease mortality burden was nearly 11-times higher at 376 000 (303 000-467 000). In children younger than 5 years, there were 81 100 (58 800-108 000) deaths, ranking total sickle cell disease mortality as 12th (compared to 40th for cause-specific sickle cell disease mortality) across all causes estimated by the GBD in 2021.

INTERPRETATION: Our findings show a strikingly high contribution of sickle cell disease to all-cause mortality that is not apparent when each death is assigned to only a single cause. Sickle cell disease mortality burden is highest in children, especially in countries with the greatest under-5 mortality rates. Without comprehensive strategies to address morbidity and mortality associated with sickle cell disease, attainment of SDG 3.1, 3.2, and 3.4 is uncertain. Widespread data gaps and correspondingly high uncertainty in the estimates highlight the urgent need for routine and sustained surveillance efforts, further research to assess the contribution of conditions associated with sickle cell disease, and widespread deployment of evidence-based prevention and treatment for those with sickle cell disease.

FUNDING: Bill & Melinda Gates Foundation.

Abdelkhalek, Z. S., I. G. Mahmoud, H. Omair, M. Abdulhay, and M. A. Elmonem, "Homogentisate 1,2-dioxygenase (HGD) gene variants in young Egyptian patients with alkaptonuria.", Scientific reports, vol. 13, issue 1, pp. 14374, 2023. Abstract

Alkaptonuria (AKU) is a rare autosomal recessive metabolic disorder caused by pathogenic variants in the homogentisate 1,2-dioxygenase (HGD) gene. This leads to a deficient HGD enzyme with the consequent accumulation of homogentisic acid (HGA) in different tissues causing complications in various organs, particularly in joints, heart valves and kidneys. The genetic basis of AKU in Egypt is completely unknown. We evaluated the clinical and genetic spectrum of six pediatric and adolescents AKU patients from four unrelated Egyptian families. All probands had a high level of HGA in urine by qualitative GC/MS before genetic confirmation by Sanger sequencing. Recruited AKU patients were four females and two males (median age 13 years). We identified four different pathogenic missense variants within HGD gene. Detected variants included a novel variant c.1079G > T;p.(Gly360Val) and three recurrent variants; c.1078G > C;p.(Gly360Arg), c.808G > A;p.(Gly270Arg) and c.473C > T;p.(Pro158Leu). All identified variants were properly segregating in the four families consistent with autosomal recessive inheritance. In this study, we reported the phenotypic and genotypic spectrum of alkaptonuria for the first time in Egypt. We further enriched the HGD-variant database with another novel pathogenic variant. The recent availability of nitisinone may promote the need for genetic confirmation at younger ages to start therapy earlier and prevent serious complications.

El-Koofy, N. M., M. A. Elmonem, M. El-Mahdy, Sawsan Okasha, Mona Isa, and A. Enayet, "Ondansetron as a Supportive Therapeutic Agent for Severe Pruritus in Pediatric Patients with Chronic Cholestasis.", Indian journal of pediatrics, 2023.
Bekheet, M. H. Y., L. A. Mansour, R. H. Elkaffas, M. A. Kamel, and M. A. Elmonem, "Serum matrix metalloproteinase-9 (MMP9) and amyloid-beta protein precursor (APP) as potential biomarkers in children with Fragile-X syndrome: A cross sectional study.", Clinical biochemistry, vol. 121-122, pp. 110659, 2023. Abstract

INTRODUCTION: Fragile-X syndrome(FXS) is a neurological disease caused by abnormal repeats in the 5'untranslated region of the FMR1 gene leading to a defective fragile-X-messenger-ribonucleoprotein-1 (FMRP). Although relatively common in children, it is usually under-diagnosed especially in developing countries where genetic screening is not routinely practiced. So far, FXS lacks a laboratory biomarker that can be used for screening, severity scoring or therapeutic monitoring of potential new treatments.

METHODS: 110 subjects were recruited; 80 male children with suspected FXS and 30 matched healthy children. We evaluated the clinical utility of serum matrix metalloproteinase-9(MMP9) and amyloid-beta protein precursor(APP) as potential biomarkers for FXS.

RESULTS: Out of 80 suspected children, 14 had full mutation, 8 had the premutation and 58 children had normal genotypes. No statistically-significant difference was detected between children with different genotypes concerning age of onset(P = 0.658), main clinical presentation(P = 0.388), clinical severity-score(P = 0.799), patient's disease-course(P = 0.719) and intellectual disability(P = 0.351). Both MMP9 and APP showed a statistically significant difference when comparing different genotype subgroups(P = 0.019 and < 0.001, respectively). Clinically, MMP9 levels were highest in children presenting with language defects, while APP was highest in children with neurodevelopmental delay. In receiver operating curve analysis, comparing full and premutation with the normal genotype group, MMP9 has an area-under-the-curve of 0.701(95 % CI 0.557-0.845), while APP was marginally better at 0.763(95 % CI 0.620-0.906). When combined together, elevated MMP9 or APP had excellent sensitivity > 95 % for picking-up FXS cases in the clinical setting.

CONCLUSIONS: Screening for circulating biomarkers in the absence of FXS genetic diagnosis is justified. Our study is the first to evaluate both MMP9 and APP in FXS suspected children in a clinical setting and to assess their correlation with disease presentation and severity.

Abd El Salam, M., K. SALAMA, Y. M. M. Selim, M. Saad, R. Rady, S. Alawbathani, S. Schroeder, M. A. Elmonem, and N. Elkhateeb, "Three siblings with variable degrees of neuromuscular involvement and congenital sideroblastic anemia: A peculiar phenotype and a surprise genotypic explanation.", Annals of human genetics, 2023. Abstract

INTRODUCTION: Congenital sideroblastic anemias (CSAs) are a group of inherited bone-marrow disorders manifesting with erythroid hyperplasia and ineffective erythropoiesis.

METHODS: We describe a detailed clinical and genetic characterization of three siblings with CSA.

RESULTS: Two of them had limb-girdle myopathy and global developmental delay. The two elder siblings performed allogenic hematopoietic stem-cell transplantation 5 and 3 years prior with stabilization of the hematological features. Exome sequencing in the non-transplanted sibling revealed a novel homozygous nonsense variant in SLC25A38 gene NM_017875.2:c.559C > T; p.(Arg187*) causing autosomal-recessive sideroblastic anemia type-2, and a second homozygous pathogenic previously reported variant in GMPPB gene NM_013334.3:c.458C > T; p.(Thr153Ile) causing autosomal-recessive muscular dystrophy-dystroglycanopathy type B14. With the established diagnosis, hematopoietic stem cell transplantation is now being scheduled for the youngest sibling, and a trial therapy with acetylcholine esterase inhibitors was started for the two neurologically affected patients with partial clinical improvement.

CONCLUSION: This family emphasizes the importance of whole-exome sequencing for familial cases with complex phenotypes and vague neurological manifestations.

2022
Seliem, Z. S., D. A. Mehaney, L. A. M. Selim, S. A. El-Saiedi, R. I. Ismail, N. M. Almenabawy, R. I. Ammar, I. A. E. Saad, M. M. Soliman, and M. A. Elmonem, "Clinical and biochemical spectrum of metabolic cardiomyopathy in Egyptian children.", African health sciences, vol. 22, issue 1, pp. 200-209, 2022. Abstract

Background: Inborn errors of metabolism (IEMs) commonly present with pediatric cardiomyopathy. Identification of the underlying cause is necessary as it may lead to improved outcomes.

Objectives: We aimed to investigate the diagnostic rate, the clinical, and biochemical spectra of IEMs among Egyptian pediatric patients presenting with cardiomyopathy, and their outcome measures.

Methods: We retrospectively analyzed the clinical, biochemical, and radiological data of 1512 children diagnosed with cardiomyopathy at Cairo University Children's Hospital over a 5-year duration.

Results: Two hundred twenty-nine children were clinically suspected as IEMs and underwent metabolic workup. Nineteen different IEMs were confirmed in 57 (24.4%) of the suspected children. Their median age at presentation was 2.6 years and the majority had extra-cardiac manifestations. Hypertrophic cardiomyopathy represented 43/57 (75.4%) of confirmed cases, while dilated cardiomyopathy represented 13/57 (22.8%), and one patient presented with a mixed phenotype. Twenty- six patients (45.6%) survived, while 31 patients (54%) either died or were lost to follow up and assumed deceased.

Conclusions: We developed for the first time a database and a diagnostic scheme for metabolic cardiomyopathies in Egyptian children. With the recent introduction of enzyme replacement therapy, many metabolic disorders became treatable, thus establishing an early and accurate diagnosis is extremely important.

Soliman, N. A., M. A. Elmonem, S. M. Abdelrahman, M. M. Nabhan, Y. A. Fahmy, A. Cogal, P. C. Harris, and D. S. Milliner, "Clinical and molecular characterization of primary hyperoxaluria in Egypt.", Scientific reports, vol. 12, issue 1, pp. 15886, 2022. Abstract

Primary hyperoxaluria (PH) is an autosomal recessive disorder of oxalate metabolism caused by pathogenic variants in either of three genes (AGXT, GRHPR or HOGA1). The study aimed at characterizing the clinical phenotypes as well as the genotypic spectrum of PH in Egypt. We screened 25 Egyptian patients suspected of PH for the three responsible genes by Sanger sequencing. We diagnosed 20 patients from 18 unrelated families, in which the natural history, family history, clinical features and genotypes were evaluated. PH patients were 15 males and 5 females ranging in age from 4 months to 31 years (median 8 years). Fifteen families were consanguineous (83%) and familial clustering was reported in six families (33%). Pathogenic variants in all 40 alleles were in AGXT, with none detected in GRHPR or HOGA1. We detected two novel pathogenic variants c.166-1_172dupGATCATGG (p.Asp58Glyfs*65) and c.766delC (p.Gln256fs*16) and seven previously reported variants in our cohort. This is the first study reporting the genotype of a considerable number of PH1 patients from Egypt. Our detected variants in the AGXT gene could form the basis for future genetic counseling and prenatal diagnosis in Egypt and surrounding populations.

Collaborators, G. B. D. D. M. 2019, "Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019.", The lancet. Diabetes & endocrinology, 2022. Abstract1-s2.0-s2213858721003491-main.pdf

BACKGROUND: Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019.

METHODS: We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990-2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals.

FINDINGS: In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73·7% (68·3 to 77·4) were classified as due to type 1 diabetes. The age-standardised death rate was 0·50 (0·44 to 0·58) per 100 000 population, and 15 900 (97·5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0·13 (0·12 to 0·14) per 100 000 population in the high SDI quintile, 0·60 (0·51 to 0·70) per 100 000 population in the low-middle SDI quintile, and 0·71 (0·60 to 0·86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r=0·62). From 1990 to 2019, age-standardised death rates decreased globally by 17·0% (-28·4 to -2·9) for all diabetes, and by 21·0% (-33·0 to -5·9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (-13·6% [-28·4 to 3·4]) and for type 1 diabetes (-13·6% [-29·3 to 8·9]).

INTERPRETATION: Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations.

FUNDING: Bill & Melinda Gates Foundation.

Yassin, N. A., S. Z. El‑Houchi, S. A. F. El‑Shafy, N. S. Soliman, M. A. Elmonem, and N. El‑Koofy, "Frequency of Hepatitis A virus as a cause of anicteric hepatitis in children under 5 years: a common yet under-recognized cause", Egyptian Pediatric Association Gazette, vol. 70, pp. 41, 2022. Abstracthepatitis_a_in_children_with_anicteric_hepatitis.pdf

Background

Hepatitis A is the most common form of acute viral hepatitis in developing countries. In children < 6 years of age, most infections are asymptomatic, and if illness does occur, it is usually anicteric. This study aimed to determine the frequency of HAV in Egyptian children under 5 years presenting with gastroenteritis-like manifestations and to associate the frequency of HAV with social, demographic, and various risk factors.
Results

Among 450 children aged from 6 months to 5 years of both sexes, presenting with gastroenteritis-like manifestations and anicteric hepatitis, 200/450 children had elevated transaminases (ALT, AST) and were recruited in the study. A total number of 24 (12%) out of 200 children were found to have HAV IgM antibodies. Lower maternal and paternal education, poor sanitary and hygienic conditions, crowding, contaminated water, and lack of sanitary facilities were significantly higher in HAV-positive group (p-value < 0.05). ALT and AST were significantly higher in HAV IgM-positive group (p-value < 0.01).
Conclusion

HAV infection is common in Egyptian children with gastroenteritis-like manifestations and anicteric hepatitis. Hepatitis A is a vaccine-preventable disease.

, "Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019.", Lancet (London, England), vol. 400, issue 10369, pp. 2221-2248, 2022. Abstract

BACKGROUND: Reducing the burden of death due to infection is an urgent global public health priority. Previous studies have estimated the number of deaths associated with drug-resistant infections and sepsis and found that infections remain a leading cause of death globally. Understanding the global burden of common bacterial pathogens (both susceptible and resistant to antimicrobials) is essential to identify the greatest threats to public health. To our knowledge, this is the first study to present global comprehensive estimates of deaths associated with 33 bacterial pathogens across 11 major infectious syndromes.

METHODS: We estimated deaths associated with 33 bacterial genera or species across 11 infectious syndromes in 2019 using methods from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, in addition to a subset of the input data described in the Global Burden of Antimicrobial Resistance 2019 study. This study included 343 million individual records or isolates covering 11 361 study-location-years. We used three modelling steps to estimate the number of deaths associated with each pathogen: deaths in which infection had a role, the fraction of deaths due to infection that are attributable to a given infectious syndrome, and the fraction of deaths due to an infectious syndrome that are attributable to a given pathogen. Estimates were produced for all ages and for males and females across 204 countries and territories in 2019. 95% uncertainty intervals (UIs) were calculated for final estimates of deaths and infections associated with the 33 bacterial pathogens following standard GBD methods by taking the 2·5th and 97·5th percentiles across 1000 posterior draws for each quantity of interest.

FINDINGS: From an estimated 13·7 million (95% UI 10·9-17·1) infection-related deaths in 2019, there were 7·7 million deaths (5·7-10·2) associated with the 33 bacterial pathogens (both resistant and susceptible to antimicrobials) across the 11 infectious syndromes estimated in this study. We estimated deaths associated with the 33 bacterial pathogens to comprise 13·6% (10·2-18·1) of all global deaths and 56·2% (52·1-60·1) of all sepsis-related deaths in 2019. Five leading pathogens-Staphylococcus aureus, Escherichia coli, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa-were responsible for 54·9% (52·9-56·9) of deaths among the investigated bacteria. The deadliest infectious syndromes and pathogens varied by location and age. The age-standardised mortality rate associated with these bacterial pathogens was highest in the sub-Saharan Africa super-region, with 230 deaths (185-285) per 100 000 population, and lowest in the high-income super-region, with 52·2 deaths (37·4-71·5) per 100 000 population. S aureus was the leading bacterial cause of death in 135 countries and was also associated with the most deaths in individuals older than 15 years, globally. Among children younger than 5 years, S pneumoniae was the pathogen associated with the most deaths. In 2019, more than 6 million deaths occurred as a result of three bacterial infectious syndromes, with lower respiratory infections and bloodstream infections each causing more than 2 million deaths and peritoneal and intra-abdominal infections causing more than 1 million deaths.

INTERPRETATION: The 33 bacterial pathogens that we investigated in this study are a substantial source of health loss globally, with considerable variation in their distribution across infectious syndromes and locations. Compared with GBD Level 3 underlying causes of death, deaths associated with these bacteria would rank as the second leading cause of death globally in 2019; hence, they should be considered an urgent priority for intervention within the global health community. Strategies to address the burden of bacterial infections include infection prevention, optimised use of antibiotics, improved capacity for microbiological analysis, vaccine development, and improved and more pervasive use of available vaccines. These estimates can be used to help set priorities for vaccine need, demand, and development.

FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care, using UK aid funding managed by the Fleming Fund.

Collaborators., G. B. D. H. 2019 B., "Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019.", The lancet. Gastroenterology & hepatology, vol. 7, issue 9, pp. 796-829, 2022. Abstract

BACKGROUND: Combating viral hepatitis is part of the UN Sustainable Development Goals (SDGs), and WHO has put forth hepatitis B elimination targets in its Global Health Sector Strategy on Viral Hepatitis (WHO-GHSS) and Interim Guidance for Country Validation of Viral Hepatitis Elimination (WHO Interim Guidance). We estimated the global, regional, and national prevalence of hepatitis B virus (HBV), as well as mortality and disability-adjusted life-years (DALYs) due to HBV, as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. This included estimates for 194 WHO member states, for which we compared our estimates to WHO elimination targets.

METHODS: The primary data sources were population-based serosurveys, claims and hospital discharges, cancer registries, vital registration systems, and published case series. We estimated chronic HBV infection and the burden of HBV-related diseases, defined as an aggregate of cirrhosis due to hepatitis B, liver cancer due to hepatitis B, and acute hepatitis B. We used DisMod-MR 2.1, a Bayesian mixed-effects meta-regression tool, to estimate the prevalence of chronic HBV infection, cirrhosis, and aetiological proportions of cirrhosis. We used mortality-to-incidence ratios modelled with spatiotemporal Gaussian process regression to estimate the incidence of liver cancer. We used the Cause of Death Ensemble modelling (CODEm) model, a tool that selects models and covariates on the basis of out-of-sample performance, to estimate mortality due to cirrhosis, liver cancer, and acute hepatitis B.

FINDINGS: In 2019, the estimated global, all-age prevalence of chronic HBV infection was 4·1% (95% uncertainty interval [UI] 3·7 to 4·5), corresponding to 316 million (284 to 351) infected people. There was a 31·3% (29·0 to 33·9) decline in all-age prevalence between 1990 and 2019, with a more marked decline of 76·8% (76·2 to 77·5) in prevalence in children younger than 5 years. HBV-related diseases resulted in 555 000 global deaths (487 000 to 630 000) in 2019. The number of HBV-related deaths increased between 1990 and 2019 (by 5·9% [-5·6 to 19·2]) and between 2015 and 2019 (by 2·9% [-5·9 to 11·3]). By contrast, all-age and age-standardised death rates due to HBV-related diseases decreased during these periods. We compared estimates for 2019 in 194 WHO locations to WHO-GHSS 2020 targets, and found that four countries achieved a 10% reduction in deaths, 15 countries achieved a 30% reduction in new cases, and 147 countries achieved a 1% prevalence in children younger than 5 years. As of 2019, 68 of 194 countries had already achieved the 2030 target proposed in WHO Interim Guidance of an all-age HBV-related death rate of four per 100 000.

INTERPRETATION: The prevalence of chronic HBV infection declined over time, particularly in children younger than 5 years, since the introduction of hepatitis B vaccination. HBV-related death rates also decreased, but HBV-related death counts increased as a result of population growth, ageing, and cohort effects. By 2019, many countries had met the interim seroprevalence target for children younger than 5 years, but few countries had met the WHO-GHSS interim targets for deaths and new cases. Progress according to all indicators must be accelerated to meet 2030 targets, and there are marked disparities in burden and progress across the world. HBV interventions, such as vaccination, testing, and treatment, must be strategically supported and scaled up to achieve elimination.

FUNDING: Bill & Melinda Gates Foundation.

Elmonem, M. A., K. R. P. Veys, and G. Prencipe, "Nephropathic Cystinosis: Pathogenic Roles of Inflammation and Potential for New Therapies.", Cells, vol. 11, issue 2, pp. 190, 2022. Abstract

The activation of several inflammatory pathways has recently been documented in patients and different cellular and animal models of nephropathic cystinosis. Upregulated inflammatory signals interact with many pathogenic aspects of the disease, such as enhanced oxidative stress, abnormal autophagy, inflammatory cell recruitment, enhanced cell death, and tissue fibrosis. Cysteamine, the only approved specific therapy for cystinosis, ameliorates many but not all pathogenic aspects of the disease. In the current review, we summarize the inflammatory mechanisms involved in cystinosis and their potential impact on the disease pathogenesis and progression. We further elaborate on the crosstalk between inflammation, autophagy, and apoptosis, and discuss the potential of experimental drugs for suppressing the inflammatory signals in cystinosis.

Collaborators, G. B. D. A. 2020, "Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020.", Lancet (London, England), vol. 400, issue 10347, pp. 185-235, 2022. Abstract

BACKGROUND: The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year.

METHODS: For this analysis, we constructed burden-weighted dose-response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15-95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol.

FINDINGS: The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15-39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0-0) and 0·603 (0·400-1·00) standard drinks per day, and the NDE varied between 0·002 (0-0) and 1·75 (0·698-4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0-0·403) to 1·87 (0·500-3·30) standard drinks per day and an NDE that ranged between 0·193 (0-0·900) and 6·94 (3·40-8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3-65·4) were aged 15-39 years and 76·9% (73·0-81·3) were male.

INTERPRETATION: There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol.

FUNDING: Bill & Melinda Gates Foundation.

2021
Taranta, A., M. A. Elmonem, F. Bellomo, E. D. Leo, S. Boenzi, M. J. Janssen, A. Jamalpoor, S. Cairoli, A. Pastore, C. De Stefanis, et al., "Benefits and Toxicity of Disulfiram in Preclinical Models of Nephropathic Cystinosis.", Cells, vol. 10, issue 12, 2021. Abstract

Nephropathic cystinosis is a rare disease caused by mutations of the CTNS gene that encodes for cystinosin, a lysosomal cystine/H+ symporter. The disease is characterized by early-onset chronic kidney failure and progressive development of extra-renal complications related to cystine accumulation in all tissues. At the cellular level, several alterations have been demonstrated, including enhanced apoptosis, altered autophagy, defective intracellular trafficking, and cell oxidation, among others. Current therapy with cysteamine only partially reverts some of these changes, highlighting the need to develop additional treatments. Among compounds that were identified in a previous drug-repositioning study, disulfiram (DSF) was selected for in vivo studies. The cystine depleting and anti-apoptotic properties of DSF were confirmed by secondary in vitro assays and after treating mice with 200 mg/kg/day of DSF for 3 months. However, at this dosage, growth impairment was observed. Long-term treatment with a lower dose (100 mg/kg/day) did not inhibit growth, but failed to reduce cystine accumulation, caused premature death, and did not prevent the development of renal lesions. In addition, DSF also caused adverse effects in cystinotic zebrafish larvae. DSF toxicity was significantly more pronounced in mice and zebrafish compared to wild-type animals, suggesting higher cell toxicity of DSF in cystinotic cells.