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Abstract

The process of analyzing data under uncertainty is a main goal for many real life problems. Statistical analysis for

such data is an interested area for research. The aim of this paper is to introduce a new method concerning the gen-

eralization and modification of the rough set theory introduced early by Pawlak [Int. J. Comput. Inform. Sci. 11 (1982)

314].

� 2003 Published by Elsevier Ltd.
1. Introduction

The present century is distinguished by the tendency of using the available data in the process of decision making.

The real data derived from actual experiments needs a special treatment to get information more close to reality. Some

statistical approaches have appeared to study such cases beginning by Dempster [1] who defined the upper and lower

probabilities using a multi-valued mapping carries a probability measure. Pawlak [3] introduced the rough set theory,

which is an excellent tool to handle a granularity of data. Pawlak [4] defined the rough probability using the equivalence

relations; that is, he associated each event with an interval whose end points are lower and upper probabilities. In

Section 2 we introduce the main concepts of Pawlak’s approach and discuss an example based on it. The Dempster’s

approach was illustrated in Section 3. We derived the conditions, which are needed to reach to Pawlak’s approximations

as a special case of Dempster’s approach. We introduce in Section 4 a general approach for computing the lower and

upper probabilities using a general relation instead of the equivalence relation in Pawlak’s approach. Some properties of

this approach are also explored in Section 5.
2. Pawlak’s approach

Pawlak [4] derived the rough probabilities by defining the approximation space A ¼ ðU ;RÞ, where U is a finite non-

empty set and R is an equivalence relation on U . Every union of elementary sets in A is called a composed set in A. If X is

a certain subset of U , then the least composed set in A containing X is called the upper approximation of X in A,
denoted by AðX Þ, and the greatest composed set in A contained in X is called the lower approximation of X in A,
denoted by AðX Þ; in symbols,
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AðX Þ ¼ fx 2 U : ½x�R \ X 6¼ /g and AðX Þ ¼ fx 2 U : ½x�R � Xg
where, ½x�R denotes the equivalence class of a relation R containing x.
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A pair of the form hAðX Þ;AðX Þi is called a rough set. Clearly, AðX Þ ¼ U n Að�X Þ. In the case that AðX Þ ¼ AðX Þ, the
set X is called observable in A, otherwise X is unobservable in A. If P is a probability measure defined on the observable

set in A, then the upper and lower probabilities of any event X in U can be defined as:
P ðX Þ ¼ P ðAðX ÞÞ and P ðX Þ ¼ P ðAðX ÞÞ
The interval P �ðX Þ ¼ ½PðX Þ; PðX Þ� � ½0; 1� is called the rough probability.

As a simple example for illustrating Pawlak’s approach, consider the game of tossing two fair dice. Therefore, we can

define a partition on the sample space as in the following diagram:
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Consider the set U ¼ fbij; bij ¼ ði; jÞ where i; j ¼ 1; 2; . . . ; 6g and the equivalence relation performs a partition on U
as shown above. If we take any subset X , for example,
X ¼ fbij; i ¼ jg ¼ fb11; b22; b33; b44; b55; b66g
Then the upper and lower approximations can be easily calculated as follows:
AðX Þ ¼ C1 [ C2 [ C5 [ C6 [ C8 and AðX Þ ¼ C1
and the upper and lower probabilities are:
P ðX Þ ¼ 5=8 and P ðX Þ ¼ 1=8
3. Dempster’s approach

Dempster [1] introduced an approach which is more general than Pawlak’s [4] approach discussed in Section 2. This

approach depends mainly upon a multi-valued mapping C form a space X to another space S which assigns a subset

CðxÞ � S to every x 2 X. This mapping carries a probability measure defined over subsets of X into a system of upper

and lower probabilities over subsets of S.
Dempster defined upper and lower images for any subset X of X as follows:
X � ¼ fx 2 X : CðxÞ \ X 6¼ /g and X� ¼ fx 2 X : CðxÞ 6¼ /;CðxÞ � Xg
The main difference between Pawlak and Dempster definitions is that this definition deals with images but Pawlak’s

definition deals with the sets themselves.

Finally, the lower and upper probabilities are
P�ðX Þ ¼ P ðX�Þ
P ðS�Þ and P �ðX Þ ¼ P ðX �Þ

P ðS�Þ
where P ðS�Þ ¼ 1�
P

CðxÞ¼/ P ðCðxÞÞ.
As a special case, if we assume that the multi-valued mapping C is onto and the images performs a partition on S, we

get then the results obtained in Section 2 using Pawlak’s approach.
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To illustrate this statement, if we consider the example discussed in the previous section and letting

X ¼ fa1; a2; . . . ; a8g, S is the set of all outcomes. Consider that the multi-valued mapping C assign to every subset ai in X
a certain class Ci. Take the set X as before;
i:e: X ¼ fbij; i ¼ jg ¼ fb11; b22; b33; b44; b55; b66g
Then, X � ¼ fa1; a2; a5; a6; a8g and X� ¼ fa1g.
Thus, P � ¼ 5

8
and P� ¼ 1

8
.

Clearly, these are the same results, which are obtained in Section 2.
4. General approach

Let U is a finite universe set and R is any binary relation defined on U , and S be the set of all elements which are in a
relation with a certain x in U , for all x 2 U .

In symbols, S ¼ ffxRg; 8x 2 Ug where fxRg ¼ fy : xRy; x; y 2 Ug.
Define b as the general knowledge base (GKB) using the arbitrary intersections of the members of S. The member

that will be equal to any union of some members of b must be omitted. That is, b ¼
fbi ¼ Si \ Sj; Si; Sj � S and bi 6¼ [Si for some ig. The pair Ab ¼ ðU ;RÞ will be called the general approximation space

based on the general knowledge base b. Consider any subset X of U , then we can define the lower and upper

approximations according to the general approach as follow:
AbðX Þ ¼ [fbx : bx � Xg and AbðX Þ ¼ [fbx : bx \ X 6¼ /g
where bx denotes the subset of b containing X .
These general approximations have the following properties:

(i) AbðX Þ � X � AbðX Þ.
(ii) AbðUÞ ¼ AbðUÞ ¼ U .

(iii) Abð/Þ ¼ Abð/Þ ¼ /.
(iv) AbðX [ Y Þ ¼ AbðX Þ [ AbðY Þ.
(v) AbðX [ Y Þ � AbðX Þ [ AbðY Þ.
(vi) AbðX \ Y Þ � AbðX Þ \ AbðY Þ.
(vii) AbðX \ Y Þ ¼ AbðX Þ \ AbðY Þ.
(viii) If X � Y , then AbðX Þ � AbðY Þ and AbðX Þ � AbðY Þ.

All the other properties introduced in the Pawlak’s approach [3] are not valid in this general approach.

Clearly, if R is an equivalence relation we will obtain Pawlak’s results; that is because the members of b will generate

a partition on U .

The general rough probability will be defined similar to Dempster’s definition as the element / must be removed

from the GKB b and the measure of the remaining set b� renormalized to unity. So that, the general rough probability

can be defined as
P �
b ðX Þ ¼ hP bðX Þ; P bðX Þi
where, P bðX Þ ¼
PðX Þ
Pðb�Þ and P bðX Þ ¼ PðX Þ

Pðb�Þ; b� ¼ b � /.
Consider the following example for illustrating this approach. Let the universe set U ¼ f1; 2; 3; 4; 5; 6g and take any

general binary relation,
R ¼ fð1; 1Þ; ð1; 2Þ; ð1; 3Þ; ð2; 3Þ; ð3; 3Þ; ð3; 4Þ; ð4; 4Þ; ð4; 5Þ; ð5; 1Þ; ð5; 2Þ; ð5; 4Þ; ð5; 5Þg
Thus,
S ¼ ff1; 2; 3; g; f3g; f3; 4g; f4; 5g; f1; 2; 4; 5gg
and the GKB b ¼ ff3g;/; f1; 2g; f4g; f4; 5gg.
Now, if take an arbitrary set X ¼ f2; 3g; then AbðX Þ ¼ f3g and AbðX Þ ¼ f1; 2; 3g.
Hence, P bðX Þ ¼ 1=4 and P bðX Þ ¼ 2=4.
Pawlak classified the subsets of the approximation space A ¼ ðU ;RÞ in the following way: If AðX Þ ¼ AðX Þ ¼ X ; then

X will be called observable in A, otherwise the set X is unobservable. He stated that if AðX Þ ¼ X then AðX Þ ¼ AðX Þ ¼ X ,
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it’s also true for AðX Þ. This statement is not valid in the general approach; for example, the lower approximation of the
subset {4} in the previous example equals the subset itself, while the upper approximation equals {4, 5}. Therefore, we

need to extend Pawlak’s classification to be:

• If AbðX Þ ¼ X and AbðX Þ 6¼ X ; then X is internally observable.

• If AbðX Þ 6¼ X and AbðX Þ ¼ X ; then X is externally observable.

• If AbðX Þ ¼ AbðX Þ ¼ X ; then X is totally observable.

Otherwise, X is unobservable.
5. Some approximation measures

Pawalak [3] introduced two measures to express the degree of completeness of the available knowledge of any set

X � U ; and the relation between two partitions. D€untsch and Gediga [2] re-interpreted the Pawlak approximation

quality using the ratio between the lower approximation of a set and the set itself. They show that this quality can be

expressed as the mean precision of the approximation of a partition by another one or as the weighted mean of the

accuracies of a set belonging to the first partition by the other.

We will apply these results to our general approach and introduce two new measures of precision.

For a set X � U , we can redefine the Pawlak’s accuracy measure as follows:
a�ðbX ;X Þ ¼
jAbðX Þj
jAbðX Þj

¼
jAbðX Þj

jU j � jAbð�X Þj
This measure depends upon the approximation of X and ð�X Þ together as seen in the definition.

To express a general knowledge base b by another one we can use the Pawlak approximation quality as
c�ðb; dÞ ¼
RfjAbðX Þj : X 2 dg

jU j
where b, d are two GKB of the universe U .

We can also apply D€untsch and Gediga [2] results using our approach as follows
c�ðb; dÞ ¼
X

X2d

jX j
jU j � p

�ðb;X Þ ¼
X

X2d

PðX Þ � p�ðb;X Þ; where p�ðb;X Þ ¼
jAbðX Þj
jX j
Also,
c�ðb; dÞ ¼
X

X2d

jAbðX Þj
jU j � a�ðb;X Þ ¼

X

X2d

P ðX Þ � a�ðb;X Þ; where a�ðbX ;X Þ ¼
jAbðX Þj
jAbðX Þj
We will now define two new measures to test the error of the lower and upper approximations. The first measure

which will be called the lower error, denoted by M�, based on the ratio between the cardinality of the uncovered area of

a certain set X and the cardinality of the set X itself. While, the other measure will be called the upper error, denoted by

M�, based on the cardinality of the uncovered area of AbðX Þ relatively to the cardinality of the set AbðX Þ. Cleary, M�,

M� 2 ½0; 1�. In symbols,
M� ¼
jX � X j
jX j and M� ¼ jX � X j

jX j
; X 6¼ /
Obviously, we can see that

• If the set X is internally observable, then, M� ¼ 0:
• If the set X is externally observable, then, M� ¼ 0:
• If the set X is totally observable (exact), then, M� ¼ M� ¼ 0:

These measures are useful to compare the precision of two approximations. We say that one approximation is better

than the other, if its associated ratio is closer to zero.
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