

A Mobile Agent Framework–Based Metadata Representation

Yasser K. Ali1, Hesham N. Elmahdy1, S. H. Ahmed2

1Information Technology Department,
2Vice Dean for Education and Students Affair,

Faculty of Computers and Information, Cairo University

Abstract
Mobile agents can significantly improve the design and
the development of Internet applications. Mobile agents
have characteristics of autonomy and adaptability to open
and distributed environments. This paper proposes
mobile agents framework. This framework presents a
mobile agent system design based on metadata
representation .we introduce the advantages of mobile
agents in implementing web services, which have all
characteristics of distrusted systems.

Keywords: Distributed Systems, Mobile Agent, Web

Services, Extensible Markup Language (XML),
Metadata.

1. Introduction

As information becomes distributed across wide
areas, information management becomes an issue to be
addressed. Due to the problems of latency, intermittent
connectivity and variable service availability, it is
difficult to ensure that consistency updates are made in a
timely fashion [1]. “A software agent can be defined as a
software entity that functions continuously and
independently in a particular environment, it is able to
carry out activities in a flexible and intelligent manner
that is responsive to changes in the
environment”[2]. “An autonomous agent (object) can
be programmed to satisfy one or more goals, even if the
agent (object) moves and loses contact with the
creator. A mobile agent (object) has the ability to move
independently from one device to another on a
network. Mobile agents are generally serializable and
persistent”.[3]

Mobile agents are programs that encapsulate data
and code, which may be dispatched from a client
computer and transported to a remote server for
execution. Mobile agents execute asynchronously and
autonomously. Once a user has created an agent, it can
run without intervention from the user. The agent
performs its task and saves any results until its

connection to the user is re-established. Mobile agent
provides a reliable transport between a client and server
without necessitating a reliable underlying
communications medium. [3]

This paper focuses on mobile agent framework,
which gives support for building web applications
transparent and platform independent components. The
contribution of this paper is to propose a model of mobile
agent framework; which consists of a hierarchy of classes
(structured as a Java package) and a visual developing
tool. Where: Mobile agents are annotated with metadata
to describe services and agent life-time is bound to a
service request

This paper delineates this subject in five sections
after the introduction section. The second section
explains fundamentals of agents and web services
techniques and related tools such as XML, metadata, and
communication protocols. The third section provides
related work in mobile agent and web services
integration. The fourth section describes the framework
architectures and its fundamental blocks such as agents,
hosts, and services. The fifth section presents our
implementation prototypes and scenario outline are
provided. Finally, conclusion and future work are
presented in section six.

2. Background

2.1 Intelligent Mobile Agent

We can consider any mobile agent to be an intelligent
mobile agent if [3].

• If a task must be performed independently of the
computer that launches the task, a mobile agent
can be created to perform this task. Once
constructed, the agent can move into the
network and complete the task in a remote
program.

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

15

Service
Requestor

Service
Provider

Service
Registry

Fi
nd

XML/SOAP/HTTP

PublishUD
DI

Bind

W
SDL/UDDI

• If a program needs to send a large number of
messages to objects in remote programs, an
agent can be constructed to visit each program
in turn and send the messages locally. Local
messages are much faster than remote messages.

• If you want to partition your programs to
execute in parallel, you can distribute the
processing to several agents, which migrate to
remote programs and communicate with each
other to achieve the final goal.

• If periodic monitoring of a remote object is
required, creating an agent that moves to the
remote object and monitors it locally is more
efficient that monitoring the object across the
network.

• If a series of operations must be performed
inside a portable device such as a cell phone or
pda that is only occasionally connected to a
network then an agent can move into the device,
perform its task, and move back into the
network only when necessary.

2.2 Web Service Technology

Web service is a software system designed to
support interoperable machine-to-machine interaction
over a network [4]. It has an interface described in a
machine-processable format - specifically “Web
Services Description Language” (WSDL) [5]. Other
systems interact with the Web service in a manner
prescribed by its description using “Simple Object
Access Protocol” (SOAP) messages [6], typically
conveyed using Hyper Text Transfer Protocol
(HTTP) [7] with an XML serialization in conjunction
with other Web-related standards [8]. This definition
should give a vision what web services really are. It's
describing a collection of protocols and open
standards for exchanging data between software
applications written in various programming
languages and running on various platforms. A web
service includes the following technologies: WSDL,
SOAP and “Universal Description, Discovery, and
Integration” (UDDI) [9] .WSDL is the standard
means for expressing Web service descriptions.
SOAP is a protocol defining the exchange of
messages containing Web service requests and
responses. UDDI is the directory services schema
commonly used to register and discover Web services
as shown in figure 1.

Figure 1.Web Services Basic Components

2.3 Metadata

Metadata is structured information that describes,
explains, locates, or otherwise makes it easier to
retrieve, use, or manage an information resource.
Metadata is often called data about data or
information about information [10]. The term
metadata is used differently in different communities.
Some use it to refer to machine understandable
information, while others use it only for records that
describe electronic resources. In the library
environment, metadata is commonly used for any
formal scheme of resource description, applying to
any type of object, digital or non-digital, Table 1
describes all types of metadata.

There are three main types of metadata:

• Descriptive metadata describes a resource for
purposes such as discovery and identification. It can
include elements such as title, abstract, author, and
keywords.

• Structural metadata indicates how compound
objects are put together, for example, how pages are
ordered to form chapters.

• Administrative metadata provides information
to help manage a resource, such as when and how it
was created, file type and other technical information,
and who can access it. There are several subsets of
links to resources based on audience or topic. Such
lists can be built as static WebPages, with the names
and locations of the resources “hard coded” in the
“Hyper Text Markup Language” (HTML). However,
it is more efficient and increasingly more common to
build these pages dynamically from metadata stored
in databases.

Table 1: Types of Metadata
Acronym Name Description

XML
Extensible
Markup
Language

Defines document content
using metadata tags and
namespaces

DTD Document Type
Definition

Defines XML document
structure (analogous to DDL
schema)

XSL Extensible Style
Language

XSL or Cascading Style
Sheets (CSS) separate layout
from data

XLL
Extensible
Linking
Language

XLL implements multi-
directional links (single or
multiple)

DOM Document
Object Model

Implements a standard API
for processing XML in any
language

RDF
Resource
Description
Framework

W3 Interoperability Project
for data content interchange

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

16

<PERSON person_id=“p1100” sex=“M”>
 <person_name>
 <given_name>yasser</given_name>
 <surname>kamal</surname>
 </person_name>
 <collage>
 Computers and Information
 </collage>
 <country>Egypt</country>
 <contact_details>
 <email>yasser_kamal@hotmail.com
 </email>
 <phone>02-4096617</phone>
 <fax>02-40-8322</fax>
 <mobile>0101932430</mobile>
 </contact_details>
</PERSON>

2.4 XML and Metadata

Metadata is used to define the structure of an XML
document or file. Metadata is published in a Document
Type Definition (DTD) file for reference by other
systems. A DTD file defines the structure of an XML file
or document. It is analogous to the Database Definition
Language (DDL) file that is used to define the structure
of a database, but with a different syntax [11].

An example of an XML document identifying data
retrieved from a PERSON database is illustrated in
Figure 2. It includes metadata markup tags (surrounded
by < … >, such as <person_name>) that provide various
details about a person. From this, we can see that it is
easy to find specific contact information in
<contact_details>, such as <email>, <phone>, <fax> and
<mobile> numbers.

Figure: 2 An Example of an XML Document with
Metadata Tags

3. Related Work
Much researches have been conducted on services

integration. Some of which utilize mobile agents.
However, not of all combine the mobile agent technology
with standards for web services integration. A few
proposed metadata with both technologies.

Antonio Corradi, Rebecca Montanari, [12] has
been proposed a framework for configurable semantic
support to mobile users, called MASS (Middleware for
Adaptive Semantic Support). MASS focuses on two
peculiar aspects. Firstly, it exploits the visibility of two
kinds of metadata, user/device profiles and policies, to
tailor semantic support functionalities. This configuration

feature enables the framework to adapt semantic
functionalities to several kinds of users and devices, thus
dealing with the heterogeneity typical of pervasive
environments. Secondly, it allows each mobile device to
exhibit its semantic functionalities, so that they can be
accessed by users in the vicinity, and it enables the
device to discover and to exploit semantic support
capabilities offered by the nearby devices. D.G.A.
Mobach, B.J. Overeinder, N.J.E. Wijngaards, and F.M.T.
Brazier[13], have been proposed a management
architecture, including a management oriented agent life
cycle model for AgentScape,[14]AgentScape is designed
to support and manage heterogeneous agents. To this
purpose AgentScape’s management system uses a
management-oriented agent life cycle model to describe
the state of heterogeneous agents. Within this model, the
suspended state is viewed as the central state of an agent.
Open questions that will be addressed in future research
concern interoperability with life cycle models in other
multi-agent system frameworks, as well as
interoperability implications when multiple extensions of
the life cycle model are used concurrently.

Dominic Greenwood and Monique Calisti [15] are
identifying a means of connecting agents and Web
services. Due to the evident technology mismatches
between Web services and software agents, including
strong vs. loose coupling and representational encodings,
they have been identified an approach that introduces an
intermediary service entity, the Gateway architecture for
enabling transparent, automatic connectivity between
Web services and agent services , which is designed to
encapsulate the functionality required to connect the two
domains, whilst ensuring minimal human intervention
and service interruption.

Lyell et al. [16] has been discussed the concept of
a hybrid “Java 2 Platform, Enterprise Edition/ Foundation
for Intelligent Physical Agents” (J2EE/FIPA)-compliant
software agent system using Colored Petri Nets. This
approach identifies two key concepts that (1) agents
should be able to expose their services as Web services
for the potential use of non-agent clients and (2) these
Web service-enabled agents should advertise using both a
UDDI registry and a FIPA Directory Facilitator (DF). In
general, our proposed architecture attempts to benefit
from the desired properties that are inherent to web
services and to the mobile agents, while overcoming the
limitations that are related to each technology when
employed alone.

The proposed solution concerns the use of mobile
agents for web services dynamic discovery and
integration, through the extensive use of mark up
languages that relies the notation of distributed systems.
The perspective framework main contribution lies in
designing agents annotated with metadata to describe
services, and its life time is bounded to a services request.
More specifically, mobile agent represents the requester
of the web services. and agent migrates to registry and
discover the web services., moreover , mobile agents
actions are described in it’s policy repository.

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

17

Service

Host Host

Agent
Agent

Service

Host

4. Framework Architecture

4.1 Framework Fundamental Blocks

The fundamental blocks of an agent system are
agents, hosts and services. An overview of the system
is presented in figure 3. An agent is dispatched by a
client to a host, where it operates in the execution
environment of that host .The agent can, if needed,
migrate between hosts and can make requests to
different services provided by hosts. Invoked services
return arbitrary information that can be processed by
agents. The proposed framework does not impose any
restriction regarding the implementation of needed
services.

Figure: 3 The Fundamental Blocks of an Agent

System

Figure: 4 Agent Execution Environments

The two main parts of an agent framework are, the agents
and the agent hosts:

Agent: small piece of software, mostly aimed at
solving a specific task on behalf of a human user (directly
or indirectly) [17]. An agent could perform the given task
on one or more agent hosts. Agents are not stand-alone
programs, since they require a host to run.

Host: a server program that executes one or more
agents. It provides a secure execution environment for
the agent, which includes persistence, transactions and
protection from other agents. The host receives the
agents through the standard/proprietary migration
process. It provides services that the agents can use. The
host also manages the communication between the agents
and provides the services that they need.

Naming service [18]: Naming generally involves
assigning a location independent name to each agent.
Since agents potentially migrate and clients or other
entities (such as other agents) may need to locate them,
there is a need for an agent-naming facility. This facility
is based on the naming convention [19], and the naming
service. Naming convention specifies what an agent's
name is, and how it is used (like Aglets [20], our
approach uses “Uniform Resource Identifier” (URIs) to
name agents). The naming service is a generic interface
to aid the use of the naming conventions. Both can be
considered as abstraction levels; the naming convention
is the low-level that specifies how to create names, obtain
references and de-reference names into agents. The
naming service is the high-level abstraction that makes
use of the low-level design to simplify agent name de-
referencing. Each core component of the framework is
denoted by an abstract class in order to assure the system
scalability and adaptability and to give developers the
possibility to design any kind of agents and/or hosts.

4.1.1 Agent

The agent concept is encapsulated by the Agent
abstract class. A task can be added to an agent, to be
performed within the environment. The task is denoted
by an abstract class in order to provide flexibility to the
agent, as shown in figure 5. Thus, an agent can perform
any task; it is not restricted only to some actions that it
can perform. Of course, at the implementation level, the
developer should describe the task as Java source-code.

Information regarding the agent can be obtained
via an AgentMetaData class which provides data about
its name, creator, owner, location etc. At the
implementation level, metadata can be stored and
processed as XML documents (for example, as
“Resource Description Framework” (RDF) constructs
[21]). In order to give support for the semantic Web
applications, metadata can include information about the
relationships between agents and other components (e.g.,
agents, hosts, services, users, etc).

Figure 5: Task State Diagram

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

18

Services
Messaging

S i

Service Access

Migration Service

Contain

Agents

Server

4.1.2 Host

The host is also encapsulated by an abstract
class, based on a server abstraction The server should
rely on client/server paradigm (at the implementation
level, we used sockets), in order to communicate with
clients. Another solution is to adopt the peer-to-peer
model [22].

The structure of agent host uses different basic
concepts, such as: Containment (a container for the
hosted agents) [23], Service access (an interface to access
the host services), Messaging support (provides
communication between agents/hosts), Migration support
(feature to support mobile agents).These components
were implemented in abstract classes, which will run in
parallel within the host context as shown in figure 6.
Each such as abstract class is denoted by a Java service
using events and listeners to communicate and launching
exceptions to signal special conditions.

Figure 6: Agent Host

A naming service maps a name for an entity to a
set of labelled properties. The Domain Name System
(DNS) [24], for instance, is a network naming service
that maps easy-to-remember names to hard-to-remember
network addresses. Similarly, name services can be put to
use in distributed computing architectures to map the
identity of a mobile software agent to its current location
on the network the names for the mobile agents must be:

• Unique: This is a requirement common to all

naming services.

• Persistent: The names must not change unless
the naming service is notified.

The mobile agents can either specify their home
base directly or can have a home base assigned. The
naming service recognizes and is capable of resolving
two types of names: location-dependent names or
location-independent names. Due to this versatility, the
service can effectively shift from a location-dependent
service to a location-independent service in the event of a
node failure comprised of the following [25]:

1. Unique Names: Mobile agents have unique
names that are premised upon Uniform Resource Unique
Names: Mobile agents have unique names that are
premised upon Uniform Resource Identifiers (URI) [26].
The URI can take the form of a URL [27], which is

location-dependent and is how the agent specifies its
home base, or the URI can take the form of a URN,
which is location-independent and requires a home base
to be assigned.

2. Home Bases: Nodes on the network that
provide the naming service for the mobile agents.

3. Mapping Records: A record kept for a mobile
agent that is kept current with the agent’s location on the
network. The record is stored at the agent’s respective
home base.

4.2 Mobile Agent and Web Services Integration

A web services should be able to invoke an
agent services and vice versa To integrate mobile
agent and web service technology in a seamless
manner, components have to be designed, which map
between the different mechanisms for service
description, service invocation, and service discovery,
in both worlds. In other words, messages
representations from the according web service
protocols (WSDL, SOAP, UDDI) have to be
translated into corresponding requests data types of
the agent system, and vice versa.

This section describes three issues that exist at
the boundary of mobile agents and web services:
service provision, request – agent mapping, and agent
communication

4.2.1 Service Provision

Web Services Description Language (WSDL),
describes services as operations on messages at a
particular network end-point, and with bindings to
concrete protocols and message formats, this methods
call pure WS invocation from agent to agent or agent
to services and vice verses, as shown in figure [4].

It would be possible to simply require the
programmer to provide a WSDL description of any
mobile agents [28]. An alternative method of service
provision is a generic functionality of mobile agents
that provide and revoke services by identifying a
network endpoint and a bundle of methods that
requests should be dispatched to. In this case the
provider is represented by a stationary agent which
communicates with the mobile agent that represents
the client. The stationary agent invokes the web
service on behalf of the user’s mobile agent.

4.2.2 Web Services and Mobile Agent Mapping

When representing mobile agents as a java
objects a Web service request maps to a particular
mobile agent that fulfils that request.

Metadata in the framework environment is
expressed according to the Resource Description
Framework (RDF) . In essence, RDF is a format for
describing semantic networks or directed graphs with
labelled edges. Nodes and edges are named with

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

19

uniform resource identifiers (URIs), making them
globally unique and thus useful in a distributed
environment. Node URIs is used to represent objects,
such as web pages, people, agents, and documents. A
directed edge connecting two nodes expresses a
relationship, given by the URI of the edge. A
standard called RDF Schema. RDF Schema specifies
a way for schema writers to define meanings for these
edge URIs, which are called RDF properties. Because
URIs are globally unique (like Java package names,
typically URIs are generated to include an Internet
domain name), the possibility of namespace conflict
is negligible. A URI can be used as a “contract” since
its use implies consistency with the semantics
provided by the party defining the URI.

RDF in itself will offer an extensible type
system which allows one to build class hierarchies
and - due to RDF's expressive capabilities - can be
used to specify ontologies or term vocabularies. This
places RDF as a language which agents can use for
describing their capabilities and negotiating the
terminologies used in communication. The road to
agent architectures requires description mechanisms,
and RDF could be used in conjunction with other
agent languages such as KQML [29] to handle
complex representational tasks. In fact, in many cases
RDF could be used to substitute KIF [30] as a more
broadly understood in our approach we proposed
RDF conjunction with “Agent Communication
Language- Foundation for Intelligent Physical
Agents” ACL-FIPA

We see the future of distributed object
applications to be built using various multiagent
techniques. It is essential, however, that agents are
supported by strong mechanisms for describing not
only the agents themselves and their capabilities, but
also other resources on the web. Resource discovery
by agents can enable qualitatively more flexible
applications than those in existence today, due to the
fact that systems can be built to intelligently react to
situations and environment not known at the time of
system design.

4.2.3 XML and Agent Communication

Instead of sending an RPC message from one
object to another, an agent communication language
(ACL) establishes an inter-agent communication
protocol for exchanging information and
coordinating multiple autonomous agents [31].
Software agents thus encapsulate a more seful, goal-
oriented component, as opposed to the smaller units
of functionality encapsulated by a typical business
object. An ACL must similarly enable a more
purposeful conversation among agents, not a basic,
low-level message exchange.

4.2.3.1 FIPA ACL

The most important output of FIPA today is its
Agent Communication Language (ACL), which is
based on speech-act theory [32]. A FIPA ACL
message consists of a header, the 'communicative
act', followed by the subject of this act, referred to as
the 'content'. FIPA ACL acts, such as 'inform',
'request', 'propose' or 'cfp', can then be used to
change the mental attitude of the agents (their belief,
desire or intention). In addition to this, a set of
predefined agent interaction protocols is defined,
such as the iterated-contract-net protocol, useful for
negotiation. It is clear that standardising on an Agent
Communication Language alone is not sufficient to
achieve interoperability. [33].

4.2.3.2 XML Encoding

By XML the syntactic representation will
enhanced (i.e., extend) the (previous) canonical (pure
“American Standard Code for Information
Interchange” - ASCII) syntactic representation by
introducing markup for parsing (the “tags”, in XML
terminology). This markup significantly facilitates
the development effort needed for parsing in and out.
The XML representation also facilitates introducing
pragmatic/operational elements that go beyond what
the pure ASCII previous syntax did: notably, via
links (in a similar sense as does HTML compared to
ASCII). For example, the ACL message includes
information beyond what is equivalent to that. Here,
the receiver is not just some symbolic name but is
also a URL that points to a particular network
location which could provide additional information
about the receiver agent’s identity (e.g., how to
contact its owner, its network ports, etc.).

Encoding ACL messages in XML offers some

advantages because the XML-encoding is easier to
develop parsers for than any other encoding. The
XML markup provides parsing information more
directly. One can use the off-the-shelf tools for
parsing XML — of which there are several
competent, easy-to-use ones already available—
instead of writing customized parsers to parse the
ACL messages. A change or an enhancement of the
ACL syntax does not have to result to a re-writing of
the parser. As long as such changes are reflected in
the ACL DTD, the XML parser will still be able to
handle the XML-encoded ACL message.

Figure 7: XML-ACL Communication Diagram

Agent Service
Description

UDDI Service
Description

SOAP ACL

WSDL XML

Metadat

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

20

<?xml encoding="US-ASCII"?><!ELEMENT
fipa_performative (perfName, sender, receiver,
content, ontology, language)>

<!ELEMENT perfName (#PCDATA)>
<!ELEMENT sender (#PCDATA)>
<!ELEMENT receiver (#PCDATA)>
<!ELEMENT content (#PCDATA)>
<!ELEMENT ontology (#PCDATA)>
<!ELEMENT language (#PCDATA

<?xml version="1.0"?>
<fipa_performative>
 <perfName>request</perfName>
 <sender>hisAgent</sender>
 <receiver>myAgent</receiver>
 <content>an_SL0_Performative</content>
 <language>SL0</language>
</fipa_performative>

In short, a significant advantage is that the
process of developing or maintaining a parser is
much simplified. More generally, XML makes ACL
more “World Wide Web (WWW)-friendly”, which
facilitates Software Engineering of agents. Agent
development ought to take advantage and build on
what the WWW has to offer as a software
development environment. XML parsing technology
is only one example. Using XML will facilitate the
practical integration with a variety of Web
technologies.

Figure 8: Simple ACL-XML DTD

Figure 9: ACL-over-XML Performative

5.1 Scenario Outline

An example of building an agent specialized in
searching product on every host of a multi-agent system.
The agent has associated a ProductTask object, which
represents the agent scope (objective). This object will
receive a reference to a service from the agent’s current
host. The agent will act like an observer; in case the task
fails to run (incompatible service type, protocol error,
etc.), the agent will cancel task’s execution and will
search another service or another host.

To illustrate this idea, we consider virtual shops

distributed on the WWW as an example. These sites
publish product catalogues, which can be consulted by
customers. In the simplest scenario, people use
conventional browsers to visit the shops and to order
products. Because this is a rather time consuming activity,
it is likely that they will limit their exploration to only a
few sites. an “Application Program Interface” (API) java
abstract class defines product class methods.

In a more advanced scenario, users would not
actually visit the sites. Rather, they would interact with a
shopping agent and tell him the kind of products they are
interested in. The shopping agent would then visit a large

number of shops, using an XML-based format to retrieve
pricing information. The developer has to override
abstract methods to specify particular handling of the
desired task. The host will send the request for a service
using agent information and task’s metadata. Information
provided via agent parameter will allow authentication
and grant permissions to use this service. The task’s
metadata will help the services access interface to give
the correct result. In this case, the service will use the
metadata of the task as a data element with certain fields
such as:

 Task_type = search, content = product, type = new,
metadata = ' product catalogues'

The structure of above code can be also used in other
situations, without modifications of the depicted classes;
the data element of product catalogue.

In this case the mobile agent is composed of two
main parts: execution and support code plus XML
metadata. The XML file plays the role of a briefcase that
includes information such as agent state, hosts (Internet
Protocol (IP) addresses) to visit, and information that the
agent has collected. The execution bytcode holds all the
intelligence required by the agent to perform tasks and
make decisions relating to migration and cloning. The
support code comprises the parser that is used to access
the XML file and the client handler that allows the agent
to attach its files to the SOAP message before migrating.
This setup makes the agent more self-sufficient in that it
carries with it code that is needed for execution and
migration. The agent can be in three modes:

1- Standby mode where it is waiting to be initialized
and its files residing in a designated home directory on
local host,

2- Migration mode where the code and XML data
are bundled into an XML SOAP message as an
attachment, and

3- Execution mode where the agent’s bytecode is
executing on top of the “Java Virtual Machine” (JVM) in
its own process.

Whenever an agent migrates to a new host, it adds to
its “visited” list the URL of the host, performs its tasks,
and then determines whether it should migrate to another
host or terminate (based on rules and criteria that are
stored in its metadata). To enable the mobile agent to
read from the XML file and write information to it, the
SAX API (Simple API for XML) provided by the “Java
Web Services Developer Pack” (JWSDP) “Java API For
XML Processing” (JAXP) API is used to parse the
mobile agent XML file. SAX is event-driven and offers a
serial access mechanism that does element-by element
processing. For example, to look for the next IP address
to visit, the agent uses the SAX parser to check the value
of the attribute visited under the HostByIP tag, and
returns the address of the first host in the list whose
visited value is 0.

Once the agent decides to move to a new host, it
requests the WSDL file that describes the Web service on
the destination host. Having the WSDL file, the mobile

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

21

public class ProductCatalog implements Catalog{
 public static ProductCatalog newInstance();
 public String addNewProduct(String
 name,float initBalance)
 throws ProductException;
 public Account getProduct(String id);
 public List getProducts();
}

public class CatalogFactory {
 public CatalogFactory();
 public Catalog createCatalog();
}

@WebService (
 serviceName = "annotatedCatalog",
 targetNamespace =
 "http://service.annotatedCatalog")
public class CatalogServiceImpl {

// service implementation code ...

@WebMethod (operationName="create-product")
public String createProduct(@WebParam
(name="productName")
String acctName,float initBalance) throws
 RemoteException,ProductException {
 return
 m_Catalog.addNewProduct(prdName,initBalance);
}

<portType name="CatalogServiceImpl" >
 <operation name="create-account">
. . .

@WebMethod (operationName="create-product")
public String
createAccount(@WebParam(name="productName")
String acctName,float initStatus) throws
 RemoteException,ProductException {
 return
m_Catalog.addNewProduct(acctName,initStatus);
}

agent creates a dynamic stub accordingly and attaches
itself (i.e., all the files constituting the agent) to the
SOAP message and then initiates an XML-RPC. Upon
receiving the XML-RPC request, the Web service
extracts the files from the SOAP message and invokes
the class file responsible for the agent execution in a new
thread. As it appears, the following tasks are required by
the Web service: providing a WSDL file that describes
how to invoke it, creating a new thread for each agent,
and finally invoking the agent to execute as shown in
figure [10].

5.2 Building the Application

The ProductCatalog class is an implementation of the
Catalog interface and provides standard Cataloguing
functionality:

This class is the existing class whose functionality we
wish to provide access to via a web service interface.
Instances of the Catalog interface (e.g. ProductCatalog)
are created by a CatalogFactory:

5.2.1 Exposing the Catalog as a Web Service Using
Metadata Annotations

In order to expose an instance of the existing Catalog as a
web service we will:

1. Mark the CatalogServiceImpl class as a Web
service using the @WebService metadata
annotation:

Note that in addition to marking the class as a Web
service implementation, the annotation attributes
provides the facilities for designating the service name
and target name space. These attributes will map to the

generated WSDL <service> name attribute and
<definitions> targetNameSpace attributes, respectively.
Annotate the class methods with @WebMethod
metadata annotations to expose them as Web service
operations; methods that are not marked will not be
publicly exposed. The implementation class
(CatalogServiceImpl) delegates various calls to a Catalog
instance it creates. For example, the createProduct()
method simply calls the underlying Catalog's
addNewProductt() method (m_Catalog is an instance of
Product Catalog obtained from the

2. CatalogFactory). It is these methods that need
to be annotated:

3. Note that in addition to marking the method as a
Web service operation, this annotation designates the
name of corresponding WSDL operation
(operationName attribute). The annotation also
provides the ability to specify the SOAP action
header with the action attribute (not shown
here). The annotation above yields the following
WSDL fragment:

Annotate the class method parameters with the
@WebParam metadata annotation. This annotation
allows the developer to specify the name of the
parameter as it appears in the WSDL. For RPC
bindings this would yield the name of the WSDL
<part> representing the parameter; for document
bindings, this is the local name of the XML element
representing the parameter (as is the case for this
example):

The @WebParam annotation also allows the

developer to specify whether the attribute is pulled from
a SOAP header, the parameter mode (IN, OUT, or
INOUT), and the parameter's namespace the annotation

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

22

Start MA

MA Looks Up
scheduled task

MA extracts data from
metadata

MA runs

MA Finished
Task in

Local Host
MA needs
anther task

MA migrate
another Host

MA Requests WSDL

End
Execution

No

Yes

No

Yes

No

Yes

End
Execution

Locate Web services in
UDDI Registry

Generate Stub Code

Generate Main Method into
Stub

Invoke Method

End Execution

Figure 10. Agent Execution Processing

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

23

<complexType name="create-account">
 <sequence>
 <element name="productName" type="string"
nillable="true"/>
 <element name="param1" type="float"/>
 </sequence>
</complexType>
. . .

void GoodProduct() throws Exception {
 String accountID =
m_endpoint.createProduct(USER1,123);
 // ... print statements removed for clarity ...
 m_endpoint.status(productID,123);
 float status = m_endpoint.getstatus(productID,
USER1);
 System.out.println("Current status is now " +
status);
 System.out.println("Shipinging 5 from product");
 m_endpoint.ship(accountID,123);
 status = m_endpoint.getStatus(productD,
USER1);
 }

in this sample yields the following WSDL fragment:

5.2.2 Creating a Client Application

Once the service has been created and deployed a client

application that leverages the service can be created from
the WSDL file generated as part of the service generation

process. The Oracle Application Server's client
generation tool creates, in addition to the classes required
by the “Java API For XML - Remote Procedure Calls”
(JAX-RPC) runtime [34], a convenience class that shields
the developer from some of the more mundane JAX-RPC
service instantiation tasks. This class, referred to as a
utility client, is leveraged to invoke methods on the
remote service by the Cataloging application
(CatalogApplication) (m_endpoint is the class attribute
for the utility client):

Given the Catalog implementation and support
classes and the annotated service implementation we can
proceed with the generation and deployment of a web
service

6. Conclusion and Future Work

The purpose of this paper is to introduce a theoretical
description of the presented framework, which is
implementing distributed application "web services"
using mobile agents, where, mobile agents are annotated
with metadata to describe services, Agent life-time is
bound to a service request Communication is restricted to
unify inter-agent communication and Web service
invocations. Future work will focus on adding Additional
services could be developed. Instead of a name service, a
global service directory (Registry) could be used, and
alpine framework to integrate with semantic Web

directions, for example, to provide metadata and
ontological support, describing agents, hosts and their
interactions in OWL (Web Ontology Language) or
OWL-based languages.

Abbreviations:
ACL … Agent Communication Language
API … Application Program Interface
ASCII … American Standard Code for

Information Interchange
DDL … Database Definition Language
DF … Directory Facilitator
DNS … Domain Name System
DTD … Document Type Definition
FIPA … Foundation for Intelligent Physical

Agents
HTML … Hyper Text Markup Language
HTTP … Hyper Text Transfer Protocol
IP … Internet Protocol
J2EE … Java 2 Platform, Enterprise Edition
JAXP … Java API For XML Processing
JVM … Java Virtual Machine
JWSDP … Java Web Services Developer Pack
MASS … Middleware for Adaptive Semantic

Support
OWL … Ontology Web Language
RDF … Resource Description Framework
RPC … Remote Procedure Calls
SAX … Simple API for XML
SOAP … Simple Object Access Protocol
UDDI … Universal Description, Discovery, and

Integration
URI … Uniform Resource Identifier
URN … Uniform Resource Name
WSDL … Web Services Description Language
WWW … World Wide Web
XLL … Extensible Linking Language
XML … Extensible Markup Language

7. References
[1] James E. Hunton, Stephanie M.Bryant, Nancy A.

Bagranoff ,”Core Concepts of Information
Technology,” ISBN: 0-471-22293-3 Paperback pp
304 July 2003.

[2] Ahmed Shaaban Abdel Alim, Imane Aly Saroit Ismail,
and S.H.Ahmed, “IDSUDA: An Intrusion Detection
System Using Distributed Agents,” CNIR Journal,
pp: 1-11, Volume (5), Issue (1), Dec., 2005.

[3] http://www.recursionsw.com/mobile_agents.htm..
[4] Mike Clark, Peter Fletcher, J. Jeffrey Hanson, Roman

Irani, Mark Waterhouse, and Jorgen Thelin, “Web
Services Business Strategies and
Architectures, ”Wrox Press ,August 2002.

[5] Erik Christensen, Francisco Curbera, Greg Meredith,
and Sanjiva Weerawarana, “Web Services
Description Language (WSDL) 1.1,” W3C Note 15
March 2001

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

24

[6] John J. Barton, “SOAP Messages with Attachments,”
W3C Note 11 Dec. 2000.

[7] James Marshall, “HTTP Made Really Easy A
Practical Guide to Writing Clients and Servers,”
http://www.jmarshall.com/easy/http/

[8] Kirk A. Evans, Ashwin Kamanna, and Joel Mueller,
“XML and ASP.NET,” SAMS, ISBN: 073571200X;
Published: Apr 8, 2002;

[9] Tyler Jewell , and David A. Chappell, “UDDI:
Universal Description, Discovery, and Integration,”
Part 1, O'Reilly March 2002.

[10] Ralph Swick, “Metadata and Resource Description,”
http://www.w3.org/Metadata/

[11] Peter J. Bogaards, “Metadata and XML,” EIDC
2004 –Wiesbaden, 10 November 2004 .

[12] Antonio Corradi, Rebecca Montanari, and
Alessandra Toninelli , “Adaptive Semantic Support
Provisioning in Mobile Internet Environments,”
ICDCS Workshops: 283-290 , 2005.

[13] D.G.A. Mobach, B.J. Overeinder, N.J.E. Wijngaards,
and F.M.T. Brazier, “Managing Agent Life Cycles in
Open Distributed System,” IIDS Group, Department
of Artificial Intelligence, Faculty of Sciences, Vrije
Universiteit Amsterdam, de Boelelaan 1081a, 1081
HV Amsterdam, The Netherlands

[14] “Agentspace ,”
http://www.cis.strath.ac.uk/~if/agentspace/

[15] Dominic Greenwood and Monique Calisti,
“Engineering Web Service - Agent Integration,
Systems,” Man and Cybernetics, 2004 IEEE
International Conference on Volume 2, pp.:1918 -
1925 vol.2, 10-13 Oct. 2004.

[16] M. Lyell, L. Rosen, M. Casagni-Simkins, and D.
Norris. “On software agents and web services: Usage
and design concepts and issues,” Proc. of the 1st
International Workshop on Web Services and Agent
Based Engineering, Sydney, Australia, July 2003.

[17] Craig Thompson, “OMG Agent Working Group
Agent Technology,” White Paper and RFP Roadmap,
March 14, 2000.

[18] Karen Myers, “Naming Service Specification,” W3C
Workshop on Constraints and Capabilities to Explore
Next Web Services Layer, October 2004.

[19] Jo Rabin, Charles McCathieNevile,Mobile Web Best
Practices 1.0, W3C Working Draft 20 December
2005.

[20] Danny Lange, and Mitsuru Oshima , “Programming
and Deploying Java Mobile Agents with Aglets,”
Wesley, 1998 (ISBN: 0-201-32582-9) ,
http://aglets.sourceforge.net/

[21] Graham Moore, “RDF and TopicMaps An Exercise
in Convergence,” XML Europe, Berlin. 2001.

[22] Marie Thilliez, Thierry Delot, Sylvain Lecomte, and
Nadia Bennani. "Hybrid Peer-To-Peer Model in
Proximity Applications," AINA, p. 306, 17 th
International Conference on Advanced Information
Networking and Applications (AINA'03),IEEE 2003.

[23] Omicini, A.; Zambonelli, F.; Klusch, M.; and
Tolksdorf, “Coordination of Internet Agents
Models, Technologies, and Applications,” ISBN: 3-
540-41613-7, 2001

[24] Paul Albitz, and Cricket Liu, “DNS and Bind,”
O'Reilly & Associates, ISBN: 0-596-00158-4, April
2001.

[25] Lee and B. Zheng, “Data Management in Location-
Dependent Information Services,” The 20th IEEE Int.
Conf. on Data Engineering (ICDE '04), Boston, MA,
March 30 - April 2, 2004.

[26] R. Fielding, “Uniform Resource Identifier (URI):
Generic Syntax,” Network Working Group, January
2005.
http://www.gbiv.com/protocols/uri/rfc/rfc3986.html.

[27] Jakob Nielsen's, “URL as UI,” Alertbox, March 21,
1999, http://www.useit.com/alertbox/990321.html

[28] Yao-Chung Chang, Jiann-Liang Chen, and Wen-
Ming Tseng, "A Mobile Commerce Framework
Based on Web Services Architecture," ITCC, pp.
403-408, International Conference on Information
Technology: Coding and Computing (ITCC'05) -
Volume I, 2005.

[29] “Knowledge Query and Manipulation Language
(KQML),” http://www.cs.umbc.edu/kqml/

[30] “Knowledge Interchange Format (KIF),”
http://logic.stanford.edu/kif/kif.html

[31] “FIPA Agent Communication specifications,”
http://www.fipa.org/repository/aclspecs.html

[32] Barry Smith, “Towards a History of Speech Act
Theory ,”
http://ontology.buffalo.edu/smith//articles/speechact.
html

[33] Michael Buckland, “Vocabulary as a Central
Concept in Library and Information Science,” Third
International Conference on Conceptions of Library
and Information Science (CoLIS3), Dubrovnik,
Croatia, 23-26 May 1999.

[34] Aoyon Chowdhury, and Parag Choudhary,
“Working with JAX-RPC, Java APIs for XML Kick
Start,SAMS,” ISBN:0-672-32434-2

ICGST-CNIR Journal, Volume (5), Issue (2), June, 2006

25

