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Abstract 
Its known that the parallelization of Genetic Algorithms in the 

worst case, make it faster without any change in the solution. Almost 
all of the real world problems has more than one objective, so it must 
to concentrate on the Multi-Objective Genetic Algorithms "MOGAs" 
and to parallelize it. The most known MOGAs could be run in 
parallel environment, but this paper tries to exploit the parallelization 
in order to develop a new MOGAs algorithm which named 
"PMOGA". The PMOGA determines a number of populations equals 
to the number of objective functions in the problem. Each population 
uses its own objective function to assign the fitness, Adjusting the 
parameters of the migration, migration interval and migration rate, 
plays the main role in forming the pareto front, this algorithm uses 
the restricted mating and the reinitialization to over come the 
problem of the diversity. 
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1. Introduction 
 
Many real-world design or decision making problems involve simultaneous 

optimization of multiple objectives. In such problems, there exist a set of solutions 
which are superior to the rest of solutions. These solutions are known as 
Pareto-optimal or nondominated solutions [1,9]. 

In the past few years, Parallel Genetic Algorithms (PGAs) have been used to 
solve difficult problems. Huge problems need a bigger population and this translates 
directly into higher computational costs. The basic motivation behind many early 
studies of PGAs was to reduce the processing time needed to reach an acceptable 
solution. This was accomplished by the implementation of GAs on different parallel 
architectures. In addition, it was noted that in some cases the PGAs found better 
solutions than comparably sized serial GAs.  

The plan of this paper is organized as follows, In section 2 a theoretical 
background is introduced, section 3 the problem under treatment is formulated, 
section 4 presents the proposed algorithm, illustrative examples and comparison are 
stated at section 5 and finally, section 6 states the conclusion. 

 
2. Theoretical Background 

 
2.1 Multi-Objective Genetic Algorithms. 

Multi-objective optimization problems give rise to a set of Pareto-optimal 
solutions, none of which can be said to be better than other in all objectives. In any 
interesting multi-objective optimization problem, there exists a number of such 
solutions which are of interest to designers and practitioners. Since no one solution is 
better than any other solution in the Pareto-optimal set, it is also a goal in a 
multi-objective optimization to find as many such Pareto-optimal solutions as 
possible. Unlike most classical search and optimization problems, GAs work with a 
population of solutions and thus are likely (and unique) candidates for finding 
multiple Pareto-optimal solutions simultaneously [6,15,10,13,16] .  

 
There are two tasks that are achieved in a MOGA:  

1. Convergence to the Pareto-optimal set, and  
2. Maintenance of diversity among solutions of the Pareto-optimal set.  

 
GAs with a suitable modification in their operators have worked well to treat 

many multi-objective optimization problems with respect to above two tasks. Most 
MOGAs work with the concept of domination. In the following the brief history of 
MOGA is stated. 

 
History of MOGA: 

1. Pioneers Before 1990: VEGA [14], Fourman [7], ESVO [12] and 
others researchers has developed their search in Objective-wise 
selection and proof of principle. 

2. Classics Until 1995: MOGA [6], NPGA [10], NSGA [15] and others 
researchers has developed their search in Pareto-based selection, 
Niching and Visual comparisons. 
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3. Elitists Until 2000: SPEA [16], PAES, PESA [11], NSGA II [3] and 
others researchers has developed their search in Archiving, elitism and 
Quantitative performance metrics. 

4. Fine Tunning Until Now : SPEAII [5] and others researchers has 
improved their search techniques, Run time analysis has performed. 

  
2.2 Parallel Genetic Algorithms. 

Genetic Algorithms (GAs) are efficient search methods based on principles of 
natural selection and genetics. They are being applied successfully to find acceptable 
solutions to problems in business, engineering, and science[8]. GAs are generally able 
to find good solutions in reasonable amounts of time, but as they are applied to larger 
and harder problems there is an increase in the time required to find adequate 
solutions. As a consequence of this there have been multiple efforts to make GAs 
faster, and one of the most promising choices is to use parallel implementations.  

The PGAs are classified into four types[4]: Global PGAs, Coarse-Grained 
PGAs, Fine-Grained PGAs, and Hybrid PGAs. In the first type there is only one 
population, but the evaluation of individuals and the genetic operators are parallelized 
explicitly (see figure 2.1). In the second type the population of the GAs is divided into 
multiple subpopulations or demes that evolve isolated from each other most of the 
time, but exchange individuals occasionally, this exchange of individuals is called 
migration (see figure 2.2). In the third type the population is partitioned into a large 
number of very small sub-populations (see figure 2.3). In the last type the 
Coarse-Grained PGAs hybrid with any of three types (see figure 2.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

··· 

Master 

Worker 1 Worker 2 Worker 3 Worker n

Figure 2.1: A Schematic of a Global PGAs 

Figure2. 3: A schematic of a fine-grained PGAs. Figure2.4: Hybrid Parallel between coarse-grained and fine-grained PGAs 

Figure 2.2: A Schematic of a Coarse-grained PGAs 
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3. Problem Formulation. 
A multi-objective problem has a number of conflicting objective functions, 

which are to be optimized simultaneously “at the same time”. 
Most real world optimization problems are naturally posed as multi-objective 

optimization problems, However, due to the complexities involved in solving multi-
objective optimization problems and due to the lack of suitable and efficient 
techniques. In traditional techniques, they have been transformed and solved through 
scalarization approaches, we have assumed that all objectives being minimized 
simultaneously. 

The presence of multiple, usually conflicting, objectives implies that in such 
problems there is rarely a single solution, which is optimal according to every 
objective. 

Mathematically, A multi-objective problem can be stated as follows: 
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4. Parallel Multi-Objective Genetic Algorithms "PMOGA". 

 
In order to treat MOGA problems, it must face tow problems, the first one is to 

converge to the Pareto-optimal set. This could be achieved by determining both 
fitness assignment and selection method, and the second is maintaining the diversity 
among solutions of the Pareto-optimal set (see 2.1). The suggested PMOGA, which 
uses PGAs, determines a number of populations equals to the number of objective 
functions in the problem. Each population uses its own objective function to assign 
the fitness, so it directs its individuals to solve its objective function. In this way, the 
resulted individuals from all populations will be crowded in different zones in the 
objective space, so the PMOGA uses the migration to move some individuals between 
the populations. These individuals which is bad for the destination population, mates 
with the original individuals creating diverse ones. Adjusting two parameters of 
migration (migration interval and migration rate), plays the main role in forming the 
pareto front. Also, the proposed algorithm uses the restricted mating and the 
reinitialization to over come the problem of diversity. 

In the following, the steps of PMOGA are stated. (see Appendix A). 
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PMOGA-Steps: 
Input:  N (population size) 

T (maximum number of generations) 
cP  (crossover probability) 

mP  (mutation rate) 
O (Number of objectives) 
Mo (Probability of Migration Occurrence) 
Mr (Migration Ratio) 

Output:  A (nondominated set) 
 

Step 1 :  Initialization: Set 0
0P φ= and t = 0. 

 For i = 1,…, N do 
a) Choose i I∈ according to some probability distribution. 
b) Set 0 0

0 0 { }P P i= + . 
For i = 1,…, O do 

Set 0
0 0
iP P= . 

 
Step 2 :  Fitness assignment: 

For i = 1,…, O do 
For j = 1,…, N do 

Evaluate ( )i jf x  according to the given objective functions. 
 

Step 3 :  Reproduction: 
For i = 1,…, O do 

a) i i
t tP ' Select ( P )= . 

b) i i
t t cP '' CrossOver( P ',P )= . 

c) i i
t t mP ''' Mutate( P '', P )= . 

 
Step 4 :  Migration: 

Determine the number of individual to migrate Nm from Mr 
For i = 1,…, O do 

a) Select Nm Individual to be Migrated from i
tP ''' . 

b) For j = 1,…, O do  
i i

t t oP '''' Mutate( P ''', M )= . 
 

Step 5 :  Elitism:  
A = NonDominate i

t( P '''')  
 

Step 6 :  Re Initialization:  
i i

t t( P ''''') Re Inetialize( P '''')=  
 

Step 7 :  Termination:  
For i = 1,…, O do 

i i
t 1 tP P '''''+ =  

t = t+1 
if ( t ≥ T  ) then Stop with output A else go to Step 2 
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5. Illustrative Examples. 
There are six test Problems have been constructed by Deb in 1998 to check 

how much  the convexity, non-convexity, discreteness, non-uniformity, multi-
modality and deception affects the solutions of the MOGA algorithms. In order to 
check the ability of the new algorithm in solve MODM problems, these six problems 
were solved by the suggested PMOGA, the results were compared with other 
techniques. All of these problems have only two objective functions to investigate the 
simplest case first. In the author’s opinion, two-dimensional problems already reflect 
essential aspects of MOPs. Each of the test problems that defined below is structured 
in the same manner and consists itself of three functions 1, ,f g h  [2]. 

 
1 1 2

2 2 1 1 1 2

1

( ) ( ( ), ( ))

( ) ( ,..., ) ( ( ), ( ,..., )), (5.1)
( ,..., )

nx R

n n

n

t X f x f X

where f X g x x h f x g x x
X x x

Minimize
∈

=

= •
=

 

 
The function 1f  is a function of the first decision variable only, g  is a 

function of the remaining 1n −  variables, and h  is a function of values of 1,f g . The 
test functions differ in these three functions as well as in the number of variables n  
and in the values that the variables may take. 

The test problem number 5 describes a deceptive problem and distinguishes 
itself from the other test problems in that ix  represents a binary string as equation 
(4.2). So it requires Binary representation, and it excluded from the comparison.  

1 1 1

2
2

1 1 1 1

( )

( ,..., ) 1 9 ( ) /( 1)
(5.2)

( , ) 1 / ( / )sin(10 )
30, 1, [0,1]

n

n i
i

i

f x x

g x x x n

h f g f g f g f
n g x

π
=

=

= + • −

= − −
= = ∈

∑
 

5.1 Parameter Settings: 
Independent of the algorithm and the test function, each simulation run was 

carried out using the following parameters: 
 

•  Number of generations T : 250 
•  Population size N : 100 
•  Crossover rate pc (one-point) : 0.8 
•  Mutation rate pm (per bit) : 0.01 
•  Niche radius shareσ  : 0.4886 

 
In the PMOGA the population is divided into two subpopulations (as two 

objective functions) each of size 50, so the whole population size equals 100. 
 As using parallel GAs, there are different parameters used in the algorithm 
which are: 

•  Migration rate : 0.05 
•  Migration interval : 0.3 – 0.8 
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5.2 Test Problem # 1. 
The first problem t1 has a convex Pareto-optimal front as shown in 

figure(5.1): 
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5.3 Test Problem # 2. 
The second problem t2 has a non-convex counterpart for t1 as shown in 

figure(5.2): 
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5.4 Test Problem # 3. 
The third problem t3 represent the discreteness features: its Pareto-optimal 

front consist of several non-contiguous convex parts as shown in figure(5.3): 
1 1 1

2
2

1 1 1 1
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5.5 Test Problem # 4. 

The fourth problem t4 contains 219 local Pareto-optimal sets and therefore 
test for the algorithm ability to deal with multimodality as shown in figure(5.4): 
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5.6 Test Problem # 6. 
The six problem t6 includes two difficulties caused by the non-uniformity 

of the objective space: Firstly, the Pareto-optimal solutions are non-uniformly 
distributed along the global Pareto front (the front is biased for solutions for which 
f1.x1/ is near one); secondly, the density of the solutions is least near the Pareto-
optimal front and highest away from the front as shown in figure(5.5): 
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1 1 1 1
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2
2

2
1 1
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5.7 Key Results. 
•  The suggested test problems provide sufficient complexity to compare 

multi-objective optimizers. With all functions, differences in performance 
could be observed among the algorithms under consideration. Regarding 
features of the particular problem, multimodality and non-uniformly 
distributed global Pareto front seem to cause the most difficulty for 
evolutionary approaches.  

•  In 1st and 2nd test problems, the PMOGA achieves slight better pareto front. 
•  In 3rd test problem, the resulted pareto front dominates others at some 

points even it is dominated by them at other points. 
•  In 4th test problem, the PMOGA achieves slight worse pareto front. 
•  In 6th test problem, the PMOGA achieves wide significantly better pareto 

front. 
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6. Conclusions. 
In this paper, a Parallel Genetic Algorithm technique known as "PMOGA" is 

introduced in order to treat the multi-objective optimization problems. The introduced 
algorithm determines a number of populations equals to the number of objective 
functions in the problem. Each population uses its own objective function to assign 
the fitness. Adjusting the parameters of migration, migration interval and migration 
rate, plays the main role in forming the pareto front, this algorithm uses the restricted 
mating and the reinitialization to over come the problem of the diversity. 

There are comparison carried out with other 8 optimizers in this area through 
five main test problems, this comparisons lead us that the PMOGA was superior in 
some situations and was same in the others. 
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Appendix A 
 
 

Flow chart of the PMOGA 
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