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Abstract 

Hepatocellular carcinoma (HCC) is a major health problem worldwide, especially for patients who are suffering 
from end-stage liver disease (ESLD). The ESLD is considered a great challenge for clinicians due to the limited chance 
for liver transplantation, which is the only curative treatment for those patients. Stem cell-based therapy as a part 
of regenerative medicine represents a promising application for ESLD patients. Many clinical trials were performed 
to assess the utility of bone marrow-derived stem cells as a potential therapy for patients with liver diseases. The aim 
of the present study is to present and review the various types of stem cell-based therapy, including the mesenchy‑
mal stem cells (MSCs), BM-derived mononuclear cells (BM-MNCs), CD34 + hematopoietic stem cells (HSCs), induced 
pluripotent stem cells (iPSCs), and cancer stem cells.

Though this type of therapy achieved promising results for the treatment of ESLD, however still there is a confound‑
ing data regarding its clinical application. A large body of evidence is highly required to evaluate the stem cell-based 
therapy after long-term follow-up, with respect to the incidence of toxicity, immunogenicity, and tumorigenesis 
that developed in many patients.
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Introduction
Hepatocellular carcinoma (HCC) is the most common 
cause of cancer-related death all over the world. It ranked 
third for mortality and fifth in incidence according to the 
World Health Organization’s (WHO) statistics in 2020 
[1]. The incidence of HCC achieved about a 75% rise in 
the last two decades, and it is continuously increasing, 
where males are three times more likely to be affected 
than females [2]. It is expected that more than one mil-
lion deaths due to liver cancer will occur by 2030 [3].

There are many risk factors for HCC that differ between 
developed and developing countries. E.g., chronic hepa-
titis B virus (HBV) infection and aflatoxin B1 (AFB1) 
are the major risk factors for liver cancer in developing 
regions [4, 5], while hepatitis C virus (HCV) [6] and non-
alcoholic fatty liver disease (NAFLD) are the major risk 
factors for liver cancer in developed countries [7].

The outcome of HCC patients is usually poor, as sur-
gery is suitable only for early-stage patients who rep-
resent 5–15% of the patients, in which the risk of 
postoperative complications is more common due to 
diminished hepatic regenerative capacity, whereas the 
treatment strategy for patients with intermediate-stage 
liver cancer is mainly trans-arterial chemoembolization 
(TACE), which achieves only a 23% improvement in the 
2-year survival rate [8].

In the last 15 years, there are numerous molecular-
targeted drugs that have been approved by the FDA for 
the treatment of patients with advanced HCC. These 
drugs included kinase inhibitors such as sorafenib 
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(2008), regorafenib (2017), lenvatinib (2018), and cabo-
zantinib (2019). Also, angiogenesis inhibitors such as 
ramucirumab (2019) and bevacizumab (2020), as well as 
immune checkpoint inhibitors including pembrolizumab 
(2018), atezolizumab (2020), and nivolumab (2020) [9]. 
However, still the incidence of recurrence and mortality 
rates are steadily increasing, where the efficacy of these 
drugs is modest and can extend the survival rates for only 
a few months in advanced HCC patients [10]. In addi-
tion to the emergence of drug toxicity or inefficacy that 
emerged after long-term use [11].

Liver transplantation is an ideal option of treatment 
for selected patients with HCC; however, lacking donors, 
high cost, and prolonged administration of immuno-
suppressive drugs make it of limited use [12, 13]. As a 
result, still there is no effective line of therapy that could 
improve the prognosis and the outcome of patients suf-
fering from HCC [11]. However, the emerging stem 
cell therapy could open a new avenue for HCC patients 
especially those with end-stage liver disease (ESLD). 
Many types of research are developing now to maintain 
the optimum conditions for producing an effective and 
potent stem cell therapy for HCC patients. Hence, the 
aim of the current study was to review the various types 
of stem cell-based therapy including mesenchymal stem 
cells (MSCs), cancer stem cells (CSCs), autologous bone 
marrow-derived cells, and induced pluripotent stem cells 
(iPSCs).

Stem cells definition and classification
Stem cells are unspecialized cells that can differentiate 
into different types of cells, in addition to their ability of 
self-renewal in order to maintain stem cell populations in 
different tissues [14]. Stem cells can be classified accord-
ing to the differentiation potential into totipotent, pluri-
potent, multipotent, and unipotent cells [15]. The most 
potent one which has the highest differentiation poten-
tial is the totipotent stem cell. These totipotent stem 
cells are the early blastomeres that are formed 1–3 days 
after oocyte fertilization, and they can form both embryo 
and extraembryonic structures [16]. The next type is the 
pluripotent stem cells (PSCs), which can differentiate 
into all germ layers. It is formed of the embryonic stem 
cells (ESCs) which constitute the inner cell mass of the 
blastocyst (formed 4–14 days after fertilization). These 
PSCs are capable of the formation of ectoderm, meso-
derm, and endoderm, but not extraembryonic structures 
[17]. After that, these cells are converted to multipotent 
stem cells, which can differentiate into only all cell types 
of one germ lineage, while the unipotent stem cells can 
differentiate only into one cell type [16, 18].

Another classification of stem cells depends upon 
the origin of the cells; this classification includes (1) 

embryonic stem cells (ESCs), which are derived from the 
inner cell mass of the blastocyst, and (2) adult stem cells, 
which are present in the whole body after development. 
The latter are multipotent stem cells that function to 
maintain healing, growth, and replacement of any dead 
or lost cells [14, 19, 20]. An important type of adult stem 
cells is the mesenchymal stem cells (MSCs), which act for 
replenishment and renewing of the tissues in which they 
reside. They are present mainly in the bone marrow, adi-
pose tissue, hair follicle, and dental pulp [21]. Signals that 
are controlling stem cell specialization can be divided 
into external signals, such as physical contact between 
cells or chemical secretion of certain chemokines by the 
surrounding tissue, whereas the internal signals are reg-
ulated through specific genes in the MSCs [14]. Though 
MSCs have a limited capacity for differentiation, recent 
evidence has shown the possibility of restoring the pluri-
potent differentiation capacity in adult stem cells by forc-
ing the expression of four transcription factors (TFs) 
that characterize a pluripotent cell [22]. These TFs allow 
reprogramming of the MSCs and therefore the forma-
tion of induced pluripotent stem cells (iPSCs) that can 
differentiate into the three embryonic layers [15, 23]. The 
iPSCs have promising applications in regenerative medi-
cine, as it has been now successfully recruited for the 
treatment of stroke [24], macular degeneration [25], oste-
oarthritis [26], diabetes, and neurodegenerative diseases 
[27]. Additionally, it has been investigated for the treat-
ment of many types of cancers including glioma, breast, 
and hepatic cancer [28–30].

Cancer stem cells (CSCs) in hepatocellular 
carcinoma
HCC is considered a complex disease formed of heterog-
enous cell populations that vary in their molecular, bio-
logical, and immunological characteristics. Consequently, 
this heterogeneity could have a potential effect on the 
disease recurrence, resistance to treatment, and the clini-
cal outcome of the patients [9, 31]. An accumulated body 
of evidence suggested that the heterogeneity within HCC 
is due to a subpopulation of progenitor cells called CSCs. 
These cells have the capability of self-renewal and plas-
ticity, which allow it to differentiate into different types 
of cells. Accordingly, these unique features render these 
liver CSCs (LCSCs) to be responsible for the tumorigen-
esis, angiogenesis, and metastasis that eventually lead to 
tumor recurrence and drug resistance [32, 33]. Moreo-
ver, Zheng and his colleagues performed the combined 
transcriptomic and functional analysis at a single-cell 
level in HCC patients. They found a diversity of LCSCs 
subpopulations that varies in their molecular, functional, 
and phenotypic characteristics, which is responsible for 
the intertumoral heterogeneity that occurs in HCC [34]. 
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Hence, it is important to target these LCSCs in order to 
improve patients’ response to treatment and survival out-
comes [35, 36].

Characterization of the LCSCs
Extensive research was performed to investigate the 
identification and characterization of the LCSCs by fluo-
rescence or magnetic-activated cell sorting, through the 
expression of many surface markers including CD133, 
CD44, CD90, CD24, CD34, CD47, C-kit, cytokeratin 
19 (CK19), epithelial cell adhesion molecule (EpCAM), 
and intercellular adhesion molecule-1 (ICAM-1) [9, 33, 
37–40]. It was demonstrated by Yang et al. that increased 
serum levels of LCSCs markers including cytokeratin 19 
(CK19), KRABCG2, CD133, nestin, and CD44 associ-
ated significantly with angiogenesis and inferior outcome 
of HCC patients [41]. Additionally, it was found that 
CK19, c-kit, ABCG2, and ALDH have an important role 
in maintaining tumorigenesis and resistance to radio-
therapy or chemotherapy by regulating the expression of 
drug-efflux-related genes [42–44].

Circulating CSCs
Another entity concerning CSCs research is the study of 
circulating CSCs in liquid biopsy for assessing the diag-
nosis, prognosis, and survival rates of the patients. In 
this regard, it was observed that increased plasma levels 
of CD45− ICAM1+ LCSCs in HCC patients associated 
significantly with poor clinical outcomes [45]. Addition-
ally, the plasma level of circulating EpCAM + LCSCs was 
found to be a useful predictor biomarker for postopera-
tive HCC relapse [46, 47]. Moreover, Guo et al. reported 
a panel of LCSCs markers formed of EpCAM, CD90, 
CD133, and CK19 that could efficiently have a role in the 
early diagnosis and early recurrence of HCC after resec-
tion [48].

Targeting the LCSCs in clinical practice
In the past few years, research has been directed towards 
targeting the LCSCs through developing anti-surface 
marker antibodies, oncolytic viruses, epigenetic regula-
tors, and small molecule inhibitors that could selectively 
affect the LCSCs [49]. The small-molecule inhibitors 
were directed against certain signaling pathways that 
regulate the stemness and proliferation of the LCSCs 
such as Wnt/β-catenin (OMP-18R5 and OMP-54F28) 
[50, 51], Notch pathway (PF-03084014) [52], TGF-β 
pathway (LY2157299) [53], and Hedgehog signaling 
pathway (LED225 [ClinicalTrials.gov. NCT02151864)]), 
while the anti-surface markers included targeting the 
CD133 through oncolytic measles viruses (MV-141.7 
and MV-AC133) [54] and anti-EpCAM (VB4-845) [55]. 
Other studies assessed the role of epigenetic control 

inhibitors on the tumorigenesis and aggressiveness of 
LCSCs such as zebularine (DNMT1 inhibitor) [56] and 
SBHA (HDAC inhibitor) [57]. Other clinical trials 
(ClinicalTrials.gov. NCT02279719) were also conducted 
including the combination of napabucasin (a STAT3 
inhibitor) and sorafenib, or amcasertib (a NANOG inhib-
itor) and sorafenib, where NANOG is a transcriptional 
factor that maintains embryonic stem cells pluripotency 
[9]. Though all the previously mentioned studies achieve 
a primary suppression of HCC, especially when com-
bined with chemotherapeutic agents, however, all the 
targeted markers and molecular pathways in LCSCs are 
similar to the other normal stem cell populations. Hence, 
eradication of LCSCs may also affect the normal hepatic 
stem cells which would result in the reduction of hepatic 
regeneration capacity and consequently liver failure. 
Therefore, proper identification and specification of the 
LCSCs remain a challenging matter, and further research 
is highly required to accurately identify and target the 
LCSCs [9, 48].

LCSCs and immunotherapy
Accumulating evidence suggested that the aggressiveness 
of the LCSCs is due to their poor immunogenicity which 
allows them to evade immunosurveillance through their 
interaction with the tumor microenvironment and the 
inhibition of different immune cells [9]. Therefore, many 
recent studies tried to assess the utility of these cells in 
immunotherapy including the development of dendritic 
cell (DC) vaccine pulsing with CD133 (ClinicalTrials.
gov. NCT02049489). In this trial, patients showed an effi-
cient cytotoxic T-cell response against CD133+ LCSCs 
that inhibited tumor growth [58]. Another study was 
performed by Choi et al. who induced a potent immune 
cytotoxic T-cell response against CD44+ EpCAM+ 
LCSCs using DCs pulsed with CD44 and EpCAM pep-
tides [59]. Other immunotherapeutic modalities which 
currently under trials are the engineered chimeric anti-
gen receptor (CAR) T cells. One of these studies was the 
development of CD133-directed CAR T cells in the treat-
ment of patients with advanced HCC [60]. Though these 
studies provided a good clinical response in controlling 
the tumor growth and achieving complete remission, the 
encountered cytotoxicity including the decreased levels 
of hemoglobin, platelets, and lymphocytes still needs to 
be resolved [60].

Clinical applications of MSCs in liver diseases
The allogenic MSCs
The MSCs are pluripotent non-hematopoietic stem cells 
that can be isolated from several sources including liver, 
umbilical cord, placenta, muscle, skin, synovial mem-
brane, amniotic fluid, and tooth root [61, 62]. The MSCs 
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commonly express surface markers including CD73, 
CD105, and CD90, while they are lacking the expression 
of CD45, CD34, CD14 or CD11b, CD79α or CD19, and 
HLA-DR [63]. Various experimental studies and clinical 
trials had been conducted to investigate the therapeutic 
utility of MSCs in different diseases including multiple 
sclerosis (MS), corneal disease, myocardial infarction, 
Crohn’s disease, amyotrophic lateral sclerosis, and acute 
respiratory distress syndrome (ARDS) [64–66]. Also, 
it had been approved in many counties for preclinical 
and clinical purposes for the treatment of, e.g., graft-
versus-host disease (GVHD) in the USA [67] and for the 
treatment of traumatic or degenerative osteoarthritis in 
Korea [68].

Some studies assessed the intravenous injection of 
umbilical cord-derived MSCs (UC-MSCs) in patients 
with primary biliary cirrhosis (PBC). They reported that 
the UC-MSCs treatment is a safe and efficient therapy, 
as there were reduced serum levels of alkaline phos-
phatase (ALP) and gamma-glutamyl transferase (GGT). 
However, there were no significant changes in serum 
glutamic pyruvic transaminase (SGPT), serum glu-
tamic oxaloacetic transaminase (SGOT), albumin, pro-
thrombin time activity, and immunoglobulin M levels 
[69, 70]. Other clinical trials demonstrated that intra-
venous infusion of UC-MSCs in patients with liver cir-
rhosis and HBV injured liver was safe, tolerable, and 
increased the survival rates of the patients [71–74]. On 
the other hand, Nevens et  al. conducted an open-label 
phase II clinical study (EudraCT 2016–001177-32) on 
24 patients with acute-on-chronic liver failure (ACLF) 
treated with human MSCs (HepaStem) transplantation. 
They reported improved survival with no adverse events 
related to therapy [75]. Similarly, Lin et al. performed an 
open-label non-blinded randomized controlled study 
on 110 patients with HBV-related ACLF infused with 
1.0–10 × 105 cells/kg allogeneic bone marrow-derived 
mesenchymal stem cells (BM-MSCs) and followed up for 
6 months. Patients treated with the BM-MSCs showed 
reduced mortality rates due to decreased incidence of 
infection and improved liver function compared to the 
control group [76]. These data provide evidence that the 
BM-MSCs could be a potential safe and feasible thera-
peutic option for HBV-related ACLF patients.

Though exogenous stem cell therapy is considered by 
different companies all over the world for sale, its safety 
and efficacy are still major challenges in large-scale clini-
cal trials that lead to the inapplicability of allogenic MSCs 
[77]. These challenges included mainly the immunogenic 
incompatibility that developed either early or second-
ary after repeated infusions due to the accumulation of 
inflammatory cells and mediators such as interferon-γ 
[78, 79]. Other technical problems associated with the 

allogenic MSCs are poor-quality control and lack of sta-
bility, in addition to the inconsistent heterogeneity, dif-
ferentiation, and migratory capacity of the cells [80, 81].

The autologous MSCs therapy
To date, cellular therapy including MSCs has become a 
promising therapeutic strategy for patients with decom-
pensated liver disease [82]. In fact, the MSCs have many 
advantages that make them a unique line of treatment for 
those patients with ESLD. As these cells were obtained 
from the patient himself, therefore, all the differentiated 
cells will carry the same genetic profile of the patient. In 
addition, MSCs are characterized by low immunogenic-
ity because they express low levels of major histocompat-
ibility complex-1 (MHC-I) molecules, so they overcome 
the immune rejection occurred with liver transplantation 
[12, 83].

Furthermore, the delivered MSCs exert an inhibitory 
effect on HCC through different mechanisms includ-
ing restoration of functioning hepatocytes, antifibrotic, 
antiapoptotic, and antioxidative effects. Additionally, it 
was found that these effects were potentiated through 
co-treatment of the MSCs with melatonin [84, 85]. Also, 
they exert anti-inflammatory function through increas-
ing the secretion of interleukin-10 (IL-10), indoleamine 
2,3‐dioxygenase (IDO), prostaglandin 2 (PGE2), trans-
forming growth factor (TGF)‐β3, and hepatocyte growth 
factor (HGF) [86]. Moreover, the MSCs have an antitu-
mor effect via inhibition of the Wnt signaling pathway 
[87]. Another important mechanism is the immunomod-
ulation characteristic of MSCs as they suppress the 
immune response through inhibiting T-cell activation 
and proliferation, as well as inducing macrophages shift 
from M1 to M2 [88, 89]. Also, the increased levels of anti-
inflammatory mediators lead to suppressing the effector 
T cells and stimulating the regulatory T cells through 
increasing FOXP3, CTLA4, and GITR expression [90, 91]. 
Therefore, Zhang and his colleagues performed a clinical 
trial (no. ChiCTR2000037732), in which they injected six 
doses of MSCs 1 × 106/kg bodyweight intravenously for 
patients with ABO-incompatible liver transplantation 
(ABO-i LT). They found that MSC transfusion could effi-
ciently reduce the risk of acute rejection similar to that of 
rituximab treatment. Additionally, MSCs are preferred as 
an immunosuppressive approach for ABO-i LT because 
there is no risk of infection and biliary complications that 
might be associated with rituximab [92].

Another concern regarding MSCs therapy is the abil-
ity of these cells to move in the direction of the inflam-
matory or damaged area to make tumor homing [25]. 
This attraction is maintained through the increased 
production of certain factors by the tumor cells includ-
ing IL-6, platelet-derived growth factor subunit B 
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(PDGFB), vascular endothelial growth factor (VEGF), 
and transforming growth factor beta-1 (TGF-b1) [93, 
94]. Recently, it was reported that some chemokines 
have a major role in MSCs tumor homing including 
C-X-C motif chemokine receptor 4 (CXCR4), CCR1, 
CXCR5, CXCR6, CCR7, and CCR9 [95–97]. These 
migratory and homing properties of MSCs allow them 
to be a promising vehicle for the delivery of antican-
cer molecules. This strategy was applied through either 
loading the MSCs with drug molecules or nanoparticle 
carriers. In this regard, Zhao et  al. assessed the effi-
cacy of adipose-derived MSCs (AD-MSCs) loaded with 
superparamagnetic iron oxide-coated gold nanoparti-
cles (SPIO@AuNPs) in HCC cell line and in mice with 
induced liver injury. They reported a successful homing 
of SPIO@AuNP-loaded AD-MSCs in the hepatic tissue, 
which make the AD-MSCs a potential specific deliv-
ery of therapeutic agents in patients with liver diseases 
[98]. Another approach was developed through genetic 
modification of MSCs to stimulate the expression of 
tumor suppressor genes or anticancer proteins [99]. 
Schug and his team demonstrated that genetically engi-
neered MSCs could significantly decrease tumor prolif-
eration and increase survival rate in mice treated with 
SMAD-NIS-MSCs through TGFB1-induced SMAD 
promoter activity [100]. However, these techniques are 
studied experimentally in  vivo and still not recruited 
for clinical applications in liver cancer patients.

In the past few years, many clinical trials have been 
performed to assess the efficiency of autologous MSCs 
in the treatment of liver diseases [101–104]. Among 
these trials was that done by Suk et  al., who reported 
that BM-MSCs therapy could improve liver function and 
Child–Pugh score in patients with liver cirrhosis com-
pared to the control group. They did not find any adverse 
event associated with the BM-MSCs administration for 
12-month follow-up period [102]. Another clinical trial 
was performed by Sakai and his team (ClinicalTrials.gov. 
NCT01062750), where they used autologous adipose 
tissue-derived stem cells (ADRCs) for intrahepatic arte-
rial infusion in patients with liver cirrhosis. The results 
showed that ADRCs therapy could efficiently and safely 
repair liver cirrhosis [103].

Though the autologous MSCs-based therapy provides a 
promising strategy for regenerative treatment of liver dis-
ease, there are many limitations encountered. These limi-
tations are the emerged chromosomal instability, emboli 
formation, and inducing immune reaction, in addition 
to the incidence of unwanted differentiation and tumor 
formation [105, 106]. Other reported limitations were 
the low migration and poor survival of the transplanted 
MSCs, which directed researchers to consider other stem 
cells for the treatment of liver diseases [107, 108].

Autologous bone marrow‑derived cells
Bone marrow (BM)-derived CD34 + hemopoietic stem 
cells (HSCs) or whole mononuclear cells (BM-MNCs) 
were considered an attractive therapeutic approach for 
ESLD patients [109]. It had been reported that trans-
plantation of autologous BM-MNCs is a safe and fea-
sible option for patients with decompensated alcoholic 
liver diseases. Additionally, the end-stage liver disease 
(MELD) scores and liver function were improved; 
however, there was an insufficient regenerative capac-
ity [110, 111]. These results are comparable to that 
reported by Lyra et  al., who concluded that infusion 
of BM-MNCs via hepatic artery could significantly 
increase albumin level and improve the Child–Pugh 
score, while there was no change in the MELD score 
[112]. Another study is done by Mohamadnejad et  al. 
(ClinicalTrials.gov. NCT01120925), who compared 
intraportal infusion of CD133 + cells, BM-MNCs, and 
placebo group. They found that there was a transient 
improvement in the MELD score in patients receiv-
ing CD133 + cells after a follow-up period of 3 months, 
while there was no improvement in the MELD score 
after 6 months of follow-up period. Also, they con-
cluded that there was no significant improvement in 
the MELD score of patients infused with MNCs neither 
after 3 nor 6 months of follow-up [113].

Indeed, most of the performed clinical trials reported a 
benefit of autologous BM stem cell transplantation after 
a maximum of 1 year [83]. However, in a recent study 
done by Kim et  al. [114], who followed up patients for 
five years after autologous BM stem cell transplantation. 
They observed the development of malignant tumors 
in 36.8% (7/19) of the patients, in the form of HCC in 
26.3% (5/19), lymphoma in 5.3% (1/19), and colon cancer 
in 5.3% (1/19) of the patients. Zekri et  al. reported that 
intraportal infusion with CD34 + CD133 + cells, followed 
by peripheral IV infusion of in vitro-differentiated MSCs 
within 1 week, and repeated infusion after 3 months 
achieved a beneficial therapeutic effect on the patients, 
with minimal adverse events and prolonged clinical effi-
cacy [115]. Similarly, many other studies reported that 
G-CSF-mobilized CD133+ stem-progenitor cells (SPCs) 
could induce transient improvement in ESLD patients 
with no detectable adverse events [116–118].

On the other side, Chruscinski and his colleagues 
observed high mortality and morbidity rates in patients 
with HSTs liver transplantation after follow-up for a long 
period. They concluded that HSTs could not be consid-
ered for clinical applications at this time due to increased 
incidence of multiorgan failure and toxicity after discon-
tinuation of the immunosuppressive regimen [119]. Simi-
larly, Margini et al. concluded that the therapeutic effect 
of HSCs is only temporary, which suggests that HSCs act 
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through producing trophic support rather than trans-dif-
ferentiation [116].

Induced pluripotent stem cell (iPSC)
Induced pluripotent stem cells (iPSCs) are produced 
from adult somatic cells (usually fibroblast) that have 
been genetically reprogrammed to differentiate into 
pluripotent ESC [120]. This reprogramming occurs 
by transfection with four transcription factors called 
Yamanaka factors (OSKM; Oct4, Sox2, Klf4, and c-Myc) 
[108]. These iPSCs were developed to overcome the chal-
lenges accompanying the application of other types of 
stem cells. As they provide a reproducible and reliable 
source of expandable, bankable, and engraftable hepat-
ocyte-like cells (HLCs), which can be repeatedly used 
for clinical treatments [121]. Additionally, Antarianto 
et al. reported that using HLCs differentiated from iPSCs 
in  vitro is more mature with lower cell–ECM adhesion, 
spatial cell distribution, albumin secretion, and CYP450 
expression than HLCs that differentiated from MSCs in 
decellularized liver scaffold [122].

Many experimental studies reported the functionality 
and feasibility of iPSCs in different liver diseases includ-
ing acute liver failure and liver fibrosis [123, 124]. Moreo-
ver, advanced therapeutic technology was developed in 
the field of gene editing modality that utilized the iPSCs 
for treating patients with metabolic liver diseases. These 
genetically engineered iPSCs showed promising success in 
disease modeling and gene correction in different heredi-
tary liver diseases including Crigler-Najjar disease or 
alpha-1 antitrypsin (A1AT) deficiency, Wilson’s disease, 
familial hypercholesterolemia, glycogen storage disease 
type 1, Niemann-Pick type C, and hemophilia B [125–
132]. Though there are many clinical trials in phases I or II 
being conducted on several diseases including cardiovas-
cular and neurological disorders [133, 134], however, no 
trials concerned with liver diseases were registered until 
now [135]. Indeed, there are many critical aspects which 
should be considered before transferring these cells safely 
for clinical applications including the long-term stability 
and tolerability. In addition to the increased risk of immu-
nological reaction and tumorigenesis especially in those 
with genetic modification [121, 136].

Conclusion
In conclusion, stem cell-based therapy achieved prom-
ising results regarding improving liver function, MELD 
score, and overall survival rates of the patients. However, 
most of these trials were performed on a small number of 
patients for short-term follow-up. Though this cellular-
based therapy appears to be safe and tolerable especially 
the autologous type, still the biological behavior of these 
cells could not be expected in the long run regarding the 

toxicity, immunogenicity, and tumorigenesis that had 
been developed in many patients. Therefore, this stem 
cell-based therapy should be evaluated after long-term 
follow-up, taking into consideration the site and route 
of administration as well as the nature of transplanted 
cells according to the type of liver injury and the pres-
ence of other comorbidities. Finally, still further research 
is highly required to overcome the challenges that occur 
after a long-term therapy, as this will open a new ave-
nue and rescue a great number of patients who had no 
options for treatment other than liver transplantation.
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HGF	� Hepatocyte growth factor
IDO	� Indoleamine 2,3‐dioxygenase
IL-10	� Interleukin-10
iPSCs	� Induced pluripotent stem cells
ICAM-1	� Intercellular adhesion molecule-1
LCSCs	� Liver cancer stem cells
MELD	� Model for end-stage liver disease
MHC-1	� Major histocompatibility complex-1
MS	� Multiple sclerosis
MSCs	� Mesenchymal stem cells
NAFLD	� Non-alcoholic fatty liver disease
PDGFB	� Platelet-derived growth factor subunit B
PGE2	� Prostaglandin 2
PBC	� Primary biliary cirrhosis
PSCs	� Pluripotent stem cells
SGOT	� Serum glutamic oxaloacetic transaminase
SGPT	� Serum glutamic pyruvic transaminase
SPIO@AuNPs	� Superparamagnetic iron oxide-coated gold nanoparticles
SPCs	� Stem-progenitor cells
TACE	� Trans-arterial chemoembolization
TFs	� Transcription factors
TGF‐β3	� Transforming growth factor-β3
TGF-b1	� Transforming growth factor beta-1
UC-MSCs	� Umbilical cord-derived MSCs
VEGF	� Vascular endothelial growth factor
WHO	� World Health Organization
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