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Abstract 

 This article deals with the Bayesian and non-Bayesian estimation of reliability 

of an  -out-of-  system with identical component strengths which are subjected to a 

common stress. Assuming that both stress and strength are assumed to have an 

exponentiated Pareto distribution with known and unequal shape parameters         

Five non-Bayesian methods of estimation will be used which are maximum 

likelihood, moments, percentile, least squares and weighted least squares. The 

Bayesian estimation will be studied under squared error and LINEX loss functions 

using Lindley’s approximation. Based on a Monte Carlo simulation study, 

comparisons are made between the different estimators of system reliability by 

obtaining their absolute biases and mean squared errors. Comparison study revealed 

that the maximum likelihood estimator works the best among the competitors. 

Key words: stress–strength model; reliability; exponentiated Pareto; maximum 

likelihood estimator; moments estimator; percentile estimator; least squares estimator; 

weighted least squares estimator; Bayes estimator; noninformative type  prior; 

squared error loss function; LINEX loss function; Lindley’s approximation.  

1. Introduction 

The stress-strength model is used in many applications of physics and 

engineering such as, strength failure and the system collapse. This model is of special 

importance in reliability literature. In the statistical approach to the stress-strength 

model, most of the considerations depend on the assumption that the component 

strengths are independently and identically distributed (iid) and are subjected to a 

common stress.  

Consider a system made up of   identical components. The strengths of these 

components          are iid random distributed variables. Assume that these 

strengths have an exponentiated  (EP) distribution that suggested by Gupta et al. 

(1998) with parameters (     ). This system is subjected to a common stress   which 
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is independent random variable distributed as EP with parameters (     ). Let 

           be a common probability density function (pdf) of         and 

           be pdf of   and written as 

                                                             

 and 

                                                              

The corresponding cumulative distribution functions are given, respectively, by 

                                          

                                          
                                      (1.1)  

The system operates satisfactorily if   or more of   components have strengths larger 

than the stress  . Consequently, the system reliability      , which is the probability 

that the system does not fail, developed by Bhattacharyya and Johnson (1974) is given 

by        =  [at least   of the           exceed     

          
 
  

            
            

  

  
                                                       (1.2) 

The particular cases       and       correspond, respectively, to parallel and series 

systems.  

 The reliability of  -out-of-  system for EP distribution can be computed by 

substituting equations (1.1) in equation (1.2) and takes the following form: 

         𝛿   
 
              

 

 
 
                   𝛿      𝛿               (1.3) 

where 𝛿  
  

  
    

 The problem of estimating system reliability was originally viewed as an 

extension of the stress-strength model to a multi-component system. The estimation of 

reliability of  -out-of-  stress–strength system has been discussed by many authors 

such as, Bhattacharya and Johnson (1974), Draper and Guttman (1978), Pandey and 

Upadhyay (1986), Pandey and Borhan Uddin (1991), Pandey et al. (1993) and 

Srinivasa Rao and Kantam (2010). They considered the strengths are iid and are 

subjected to a common stress. Hassan and Basheikh (2012) studied  the Bayesian and 

non-Bayesian estimation of reliability of an s-out-of-k system with non-identical 

component strengths which are subjected to a common stress. They assumed that  

both stress and strength have an exponentiated Pareto distribution with common and 

known shape parameter.  

The main aim of this article is estimating the reliability in multi-component 

stress-strength model of an  -out-of-  system. Assuming both stress and strength are 

independently distributed as EP with known and unequal shape parameters       . 

This problem is studied when the strengths of the components are iid. Maximum 

likelihood estimator (MLE), moment estimator (ME), percentile estimator (PCE), 

least squares estimator (LSE) and weighted least squares estimator (WLSE) are 

obtained. Also, the Bayes estimators under squared error and LINEX loss functions 
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are discussed using Lindley’s approximation. Monte Carlo simulation is performed 

for comparing different methods of estimation. 

The rest of the article is organized as follows. In Section 2, different methods 

of estimation of        are discussed. In Section 3, numerical illustration is carried out 

to illustrate theoretical results. In Section 4, simulation results are displayed. Finally, 

conclusion is presented in Section 5. 

2. Different Methods of Estimation of        

It is well known that the method of maximum likelihood estimation has 

invariance property. When the method of estimation of unknown parameter is 

changed from maximum likelihood to any other traditional method, this invariance 

principle does not hold good to estimate the parametric function. However, such an 

adoption of invariance property for other optimal estimators of the parameters to 

estimate a parametric function is attempted in different situations by different authors 

[see Srinivasa Rao and Kantam (2010)]. In this direction, in the following subsections 

some methods of estimation for the reliability of an  -out-of-  system in stress–

strength model will be proposed by considering the estimators of the parameters of 

stress, strength distributions. 

2.1 Maximum likelihood estimator of        

Let            be a random sample of size   drawn from EP(     ), then 

                  denote the order statistic of the observed sample. Let 

            be a random sample of size   drawn from EP(     ), then           

        denote the order statistic of the observed sample. Then the likelihood 

function is given by 

                               
 
               

 
     

                                          
   

   
   

           
         

       

                                               
        

                 
         

                                                     

                                                   
        

                                                             (2.1)  

Then the logarithm of the likelihood function is given by 

                                                         

                                                            
     

              

                                                            
     

                     
 
        

                                                               
 
                                                                                                        

For simplicity; write                      to be     

The first derivatives of the log-likelihood function with respect to   and    are given, 

respectively, by 
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                                                                               (2.2) 

Then the MLE’s of   and   , denoted by          and         , respectively, can be 

obtained as the solution of equations (2.2) as 

 
          

 

            
     

   

 

          
 

            
     

   

 
                                                                                      (2.3) 

The MLE of       , denoted by           , is obtained by substitute          and 

          in equation (1.3). 

2.2 Moments estimator of        

Since the strengths of    components          follow EP (     ) and the 

stress   follows EP (     ), then their population means are given by  

 
 
 
               

 

  
          

 
 
               

 

  
          

                                                               (2.4)   

Here        denotes the beta function.  According to the method of moments, 

equating the samples means with the corresponding populations means. Then, 

 
            

 

  
          

            
 

  
          

                                                                          (2.5)  

The ME’s of   and    ,denoted by         and        , respectively, can be obtained 

by solving the non-linear equations (2.5) numerically. 

The ME of       , denoted by          , is obtained by substitute         and          in 

equation (1.3). 

2.3 Percentile estimator of        

The percentile estimators can be obtained by equating the sample percentile 

points with the population percentile points. In case of EP distribution it is possible to 

use the same concept to obtain the estimators based on the percentiles, because of the 

structure of its distribution function.  
According to Kao (1958,1959) several estimators of     and    , where     and     

are the samples percentile, can be used as estimates for populations percentile 

              and              . 

In this work, the following formulas can be used 

    
 

   
                        and              

 

   
               

which are the expected values of         and         respectively. 

Then the PCE’s of   and    can be obtained by minimizing the following equations 

with respect to   and   , respectively, 
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                                                           (2.6) 

Then the PCE’s of   and     denoted by          and         , respectively, can be 

obtained as the solution of equations (2.6) as  

 
         

                     
     

   

               
       

   

 

         
                     

     
   

               
       

   

   

                                                                    (2. 7) 

The PCE of       , denoted by           , is obtained by substitute          and           

in equation (1.3). 

2.4 Least square and weighted least square estimators of        

Least square estimators are obtained by minimizing the sum of squared errors 

between the value and its expected value. This estimation method is very popular for 

model fitting, especially in linear and non-linear regression.  

According to Johnson et al. (1995),  

           
 

   
                           

 

   
              

and 

           
        

           
                   

        

           
   

Using the expectations and the variances of         and        , two variants of the 

least squares methods can be used. 

The LSE’s of   and  , denoted by          and        , respectively, can be obtained 

by minimizing the following equations with respect to   and    

 
          
 
              

  
       

          
 
              

  
                                                                                     (2.8)                                                                          

The LSE of       , denoted by           , is obtained by substitute          and           

in equation (1.3). 

Also, the WLSE’s of   and   ,denoted by           and          , respectively,  can 

be obtained by minimizing the following equations with respect to    and    

 
             
 
              

  

             
 
              

  
                                                                                         (2.9)   

where, 

    
 

          
 

           

        
         

 

          
 

           

        
       

The WLSE of       , denoted by            , is obtained by substitute           and 

           in equation (1.3). 
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In the following subsection the approximate Bayes estimators (BE’s) of        

are obtained. The approximate Bayes estimators under squared error loss function and 

LINEX loss function by using Lindley’s approximation, denoted by  BESL and 

BELL, respectively, are discussed. 

2.5 Bayes estimator of        

Assume    and    are independent random variables. Following Afify (2010) 

the noninformative type of prior for parameters    and    is considered. Therefore, 

the joint prior density of         is 

         
 

  

 

  
                 .                                                               

Combining the joint prior density of         and the likelihood function given in 

equation (2.1) to obtain the joint posterior density of         as 

𝜋            
                          

                                  
 
 

 
 

      

𝜋            
 

  
                                                                            (2.10) 

where, 

    
     

             
         

             
         

       

       
     

             
         

   
 

 

 

 
     

                    
         

         . 

Under squared error and LINEX loss functions, the BE’s of        denoted by 

           and            , respectively, defined as   

                                 𝜋           
 

 

 

 
           

            
 

 
                       

 

 
              𝜋           

 

 

 

 
          

this integrals cannot be obtained in a simple closed form. Alternatively, using the 

approximation of Lindley (1980) to compute the approximate BE of       . 

Using Lindley’s approximation,  the approximate BE’s of        under squared error 

and LINEX loss functions denoted by             and            , respectively, take the 

following forms 

 

                    
 

 
                       

          
   

             
 

 
       

       
 

 
                                        

        
          

                               
 

 
                    (2.11) 

where all functions in equations (2.11) defined in appendix A and evaluated at the 

posterior mode      
   

            
     

   

        
   

            
     

   

  

 

 



7 
 

3. Simulation Study 

In this Section, Monte Carlo simulation is performed to observe the behavior 

of the different methods of estimation of        for different sample sizes, different 

parameter values and for different  -out-of-  systems. The performances of the 

different estimators of        are compared in terms of their absolute biases and mean 

squared errors (MSE’s). The absolute biases and MSE’s are computed for the 

different estimators over 5000 replications for different case. The simulation 

procedures are described through the following steps:  

Step (1): A random samples            and             of sizes  (   ) = (10,10 , 

(10,30), (10,50 , (30,10), (30,30), (30,50 , (50,10), (50,30) and (50,50   are generated 

from EP distributions. 

Step (2): The parameters values are selected as (           ) = (1.5,0.5,3,5  and 

(0.5,1.5,5,3). The selected values for  -out-of-  systems are (1,3), (2,3), (3,3) and 

(1,1). It is evident that, (1,3) reduce to parallel system, (3,3) reduce to series system 

and (1,1) reduce to single component. 

Step (3): The estimation of the parameters   and    are considered. The MLE’s and 

PCE’s of   and    can be obtained from equations (2.3) and (2.7), respectively. The 

ME’s of   and    can be obtained by solving the non-linear equations (2.5). Also, 

The LSE’s and WLSE’s of   and    can be obtained by minimizing equations (2.8) 

and (2.9) with respect to   and   , respectively.  

Step (4): The MLE, ME, PCE, LSE and WLSE of        are computed by using the 

estimates of   and    obtained in step (3). 

Step (5): The approximate Bayes estimates of        under squared error and LINEX 

loss functions, at  =1, using Lindley’s approximation can be computed from 

equations (2.11).  

Step (6): Repeat the pervious steps from (1) to (5)   times representing   different 

samples, where    5000. Then, the absolute average bias and MSE of the estimates 

of        are computed.  

 

4. Simulation Results 

All simulated studies presented here are obtained via MathCAD (14). The results are 

reported in Tables 1 and 2. 

 From Tables 1 and 2 many conclusions can be made on the performance of all 

methods of estimation of       . These conclusions are summarized as follows: 

1- The value of        increases as the value of    and    increase and as the 

value of    and    decrease (see Tables 1 and 2). 

2- It is found that the        are broadly in following order of descending value 

                            when (           ) = (1.5,0.5,3,5  (see 
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Table 1) and                             at (           ) = (0.5,1.5,5,3) 

(see Table 2). 

3- For all the methods it is observed that when     and     increases the 

MSE’s decrease. For fixed , as   increases the MSE’s decrease. For fixed , 

as   increases the MSE’s decrease. Also, the biases decrease in almost all 

values expects for some few cases. 

4- For fixed value of  , as   increases the value of        decreases. 

5- With respect to MSE’s, the MLE performs the best estimators for        in 

almost all of the cases compared to other reliability estimators. The 

performance of the BESL and BELL are quite close to the MLE. 

6- As far as biases are concerned, it is observed that the MLE’s have the 

minimum biases in almost all of the cases expect for few cases, the PCE’s 

have minimum biases. 

7- Regarding to series system at (     = (3,3) the BESL performs the best 

estimators for        when (           ) = (1.5,0.5,3,5  for most different 

sample sizes in terms of MSE’s (see Table 1)  

8- According to parallel system at (     = (1,3) the BELL works the best 

estimators for        when (           ) = (0.5,1.5,5,3)  for all different 

sample sizes with respect to MSE’s (see Table 2) 

9- WLSE works better estimator for        than LSE in all cases 

10-  In almost all of the cases, the performance of ME is the worst estimators for 

       as for as the MSE’s are concerned.   

11- In the context of computational complexities, MLE, PCE, BESL and BELL 

are easiest to compute. They do not involve any non-linear equation solving, 

whereas the ME, LSE and WLSE involve solving non-linear equations and 

they need to be calculated by some iterative processes. 

 

5. Conclusion 

  In this article, different methods of estimation of reliability in multi-

component stress-strength systems are considered. Both stress and strength are 

assumed to be independent and have an EP distribution. Estimation of system 

reliability in an  -out-of-  system is studied when the component strengths are iid and 

subjected to a common stress. In particular, the reliability estimation of series and 

parallel systems are also studied. In addition, the estimation of reliability of single 

component is also considered as special case. Comparison the performance of all 

estimators, it is observed that the MLE performs the best among the competitors 

relative to their absolute biases and MSE’s. 
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Table 1: Results of simulation study of absolute bias and MSE of estimates of 

reliability for   =1.5,   =0.5,   =3 ,   =5 ,  =1 and 5000 replications 

 

(   ) 

 

True

        

 

(   ) 

Method of estimations 

MLE MME PCE LSE WLSE BESL BELL 

 

 

 

 

 

 

 

 

 

(1,3) 

 

 

 

 

 

 

 

 

 

0.957 

 

(10,10) 0.00458 0.01988 0.00925 0.01757 0.01564 0.01162 0.01202 

0.00066 0.00401 0.00096 0.00954 0.00837 0.00091 0.00094 

(10,30) 0.00204 0.01891 0.01041 0.00312 0.00365 0.00907 0.00939 

0.00044 0.00267 0.00081 0.00086 0.00095 0.00062 0.00064 

(10,50) 0.00145 0.01929 0.01095 0.00242 0.00287 0.00848 0.00877 

0.00039 0.00255 0.00079 0.00053 0.00051 0.00056 0.00057 

(30,10) 0.00431 0.00822 0.00344 0.01620 0.01423 0.00635 0.00652 

0.00037 0.00181 0.00042 0.00854 0.00744 0.00041 0.00042 

(30,30) 0.00140 0.00721 0.00393 0.00212 0.00194 0.00355 0.00365 

0.00017 0.00099 0.00025 0.00025 0.00022 0.00020 0.00020 

(30,50) 0.00082 0.00675 0.00449 0.00165 0.00154 0.00299 0.00307 

0.00015 0.00077 0.00024 0.00020 0.00018 0.00016 0.00017 

(50,10) 0.00445 0.00668 0.00157 0.01813 0.01491 0.00555 0.00568 

0.00033 0.00165 0.00033 0.00983 0.00801 0.00035 0.00036 

(50,30) 0.00160 0.00603 0.00212 0.00222 0.00206 0.00284 0.00291 

0.00014 0.00074 0.00017 0.00032 0.00032 0.00015 0.00015 

(50,50) 0.00101 0.00503 0.00266 0.00161 0.00145 0.00228 0.00233 

0.00011 0.00055 0.00015 0.00015 0.00014 0.00012 0.00012 

 

 

 

 

 

 

 

 

 

(2,3) 

 

 

 

 

 

 

 

 

 

0.867 

(10,10) 0.00982 0.03888 0.02022 0.02502 0.02261 0.02447 0.02707 

0.00456 0.01949 0.00606 0.01842 0.01598 0.00536 0.00575 

(10,30) 0.00339 0.04031 0.02412 0.00481 0.00621 0.01894 0.02099 

0.00314 0.01454 0.00514 0.00455 0.00446 0.00382 0.00404 

(10,50) 0.00188 0.04181 0.02580 0.00368 0.00502 0.01760 0.01954 

0.00285 0.01389 0.00496 0.00385 0.00372 0.00348 0.00368 

(30,10) 0.01067 0.01500 0.00691 0.02481 0.02191 0.01447 0.01568 

0.00272 0.01072 0.00298 0.01490 0.01307 0.00281 0.00292 

(30,30) 0.00310 0.01515 0.00907 0.00466 0.00427 0.00787 0.00859 

0.00132 0.00643 0.00180 0.00183 0.00166 0.00141 0.00145 

(30,50) 0.00155 0.01471 0.01072 0.00350 0.00329 0.00651 0.00713 

0.00110 0.00512 0.00168 0.00148 0.00135 0.00118 0.00120 

(50,10) 0.01126 0.01161 0.00220 0.02740 0.02269 0.01289 0.01389 

0.00246 0.00972 0.00245 0.01648 0.01355 0.00246 0.00254 

(50,30) 0.00387 0.01318 0.00450 0.00498 0.00459 0.00652 0.00703 

0.00104 0.00502 0.00128 0.00155 0.00142 0.00108 0.00110 

(50,50) 0.00228 0.01107 0.00618 0.00369 0.00333 0.00513 0.00555 

0.00082 0.00383 0.00108 0.00113 0.00102 0.00086 0.00087 

 

 

 

 

 

 

 

(3,3) 

 

 

 

 

 

 

 

0.686 

(10,10) 0.00916 0.03484 0.02325 0.01790 0.01674 0.02412 0.03175 

0.01405 0.04333 0.01684 0.02746 0.02497 0.01355 0.01461 

(10,30) 0.00073 0.04607 0.03283 0.00165 0.00135 0.01847 0.02444 

0.01032 0.03481 0.01431 0.01467 0.01401 0.01038 0.01101 

(10,50) 0.00314 0.05021 0.03656 0.00275 0.00020 0.01695 0.02257 

0.00954 0.03348 0.01369 0.01362 0.01293 0.00966 0.01020 

(30,10) 0.01508 0.00558 0.00485 0.02502 0.02203 0.01627 0.02040 

0.00872 0.02876 0.00954 0.01893 0.01716 0.00824 0.00863 

(30,30) 0.00306 0.01422 0.01171 0.00463 0.00427 0.00839 0.01082 

0.00457 0.01865 0.00582 0.00618 0.00565 0.00454 0.00467 

(30,50) 0.00047 0.01602 0.01526 0.00313 0.00304 0.00665 0.00873 

0.00381 0.01522 0.00531 0.00503 0.00461 0.00381 0.00390 

(50,10) 0.01671 0.00123 0.00292 0.02829 0.02325 0.01497 0.01846 

0.00802 0.02672 0.00840 0.01905 0.01657 0.00749 0.00780 
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Continued Table 1 

 

(   ) 

 

True

        

 

(   ) 

Method of estimations 

MLE MME PCE LSE WLSE BESL BELL 

 

(3,3) 

 

0.686 

(50,30) 0.00514 0.01365 0.00430 0.00605 0.00559 0.00751 0.00931 

0.00365 0.01521 0.00438 0.00490 0.00451 0.00361 0.00369 

(50,50) 0.00251 0.01193 0.00812 0.00431 0.00389 0.00574 0.00719 

0.00287 0.01198 0.00361 0.00387 0.00351 0.00286 0.00291 

 

 

 

 

 

 

 

 

 

(1,1) 

 

 

 

 

 

 

 

 

 

0.837 

(10,10) 0.00785 0.03120 0.01757 0.02016 0.01833 0.02007 0.02284 

0.00495 0.01834 0.00627 0.01636 0.01444 0.00531 0.00564 

(10,30) 0.00157 0.03510 0.02245 0.00209 0.00374 0.01549 0.01767 

0.00352 0.01410 0.00534 0.00510 0.00497 0.00391 0.00411 

(10,50) 0.00006 0.03710 0.02444 0.00112 0.00270 0.01434 0.01639 

0.00323 0.01352 0.00513 0.00449 0.00430 0.00361 0.00377 

(30,10) 0.01002 0.00960 0.00507 0.02201 0.01939 0.01237 0.01376 

0.00301 0.01088 0.00330 0.01286 0.01137 0.00297 0.00308 

(30,30) 0.00252 0.01219 0.00824 0.00380 0.00349 0.00660 0.00742 

0.00152 0.00678 0.00200 0.00208 0.00190 0.00157 0.00160 

(30,50) 0.00095 0.01249 0.01016 0.00276 0.00262 0.00538 0.00609 

0.00127 0.00547 0.00185 0.00169 0.00154 0.00131 0.00134 

(50,10) 0.01081 0.00651 0.00029 0.02460 0.02028 0.01114 0.01230 

0.00274 0.00998 0.00281 0.01397 0.01164 0.00265 0.00273 

(50,30) 0.00353 0.01095 0.00364 0.00442 0.00408 0.00562 0.00622 

0.00121 0.00540 0.00147 0.00173 0.00160 0.00123 0.00124 

(50,50) 0.00194 0.00934 0.00565 0.00320 0.00289 0.00438 0.00486 

0.00095 0.00419 0.00122 0.00130 0.00117 0.00097 0.00098 

 

 

Note: The first entry is the simulated about absolute biases. 

          The second entry is the simulated about MSE’s. 
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Table 2: Results of simulation study of absolute bias and MSE of estimates of 

reliability for   =0.5,   =1.5,   =5 ,   =3 ,  =1 and 5000 replications 

 

(   ) 

 

True

        

 

(   ) 

Method of estimations 

MLE MME PCE LSE WLSE BESL BELL 

 

 

 

 

 

 

 

 

 

(1,3) 

 

 

 

 

 

 

 

 

 

0.345 

(10,10) 0.00312 0.01913 0.01714 0.00953 0.01024 0.01154 0.00572 

0.01068 0.03303 0.01264 0.02074 0.01943 0.00990 0.00960 

(10,30) 0.00950 0.00196 0.00100 0.01854 0.01631 0.00743 0.00422 

0.00630 0.02179 0.00727 0.01382 0.01270 0.00589 0.00578 

(10,50) 0.01128 0.00473 0.00493 0.01913 0.01658 0.00699 0.00428 

0.00549 0.01934 0.00621 0.01261 0.01158 0.00511 0.00503 

(30,10) 0.00635 0.02863 0.02403 0.00612 0.00387 0.00709 0.00259 

0.00835 0.02689 0.01075 0.01216 0.01153 0.00794 0.00778 

(30,30) 0.00131 0.00793 0.00983 0.00294 0.00279 0.00426 0.00236 

0.00371 0.01379 0.00478 0.00491 0.00450 0.00362 0.00358 

(30,50) 0.00264 0.00337 0.00345 0.00290 0.00259 0.00337 0.00198 

0.00274 0.01077 0.00341 0.00373 0.00340 0.00268 0.00266 

(50,10) 0.00630 0.03327 0.02954 0.00579 0.00284 0.00816 0.00390 

0.00777 0.02524 0.01040 0.01141 0.01065 0.00745 0.00730 

(50,30) 0.00106 0.00813 0.01292 0.00107 0.00130 0.00295 0.00131 

0.00319 0.01204 0.00411 0.00424 0.00389 0.00313 0.00310 

(50,50) 0.00089 0.00475 0.00718 0.00189 0.00178 0.00268 0.00154 

0.00224 0.00904 0.00292 0.00291 0.00265 0.00221 0.00220 

 

 

 

 

 

 

 

 

 

(2,3) 

 

 

 

 

 

 

 

 

 

0.118 

(10,10) 0.01315 0.04526 0.02288 0.02756 0.02665 0.02932 0.02599 

0.00567 0.02319 0.00746 0.01675 0.01565 0.00634 0.00584 

(10,30) 0.01329 0.02058 0.00714 0.02709 0.02438 0.01775 0.01612 

0.00363 0.01326 0.00387 0.01457 0.01319 0.00361 0.00345 

(10,50) 0.01372 0.01646 0.00224 0.02635 0.02350 0.01579 0.01443 

0.00327 0.01153 0.00324 0.01390 0.01257 0.00316 0.00304 

(30,10) 0.00398 0.04501 0.02566 0.00768 0.00856 0.02128 0.01873 

0.00379 0.01709 0.00620 0.00500 0.00485 0.00444 0.00415 

(30,30) 0.00472 0.01878 0.01060 0.00689 0.00638 0.01025 0.00930 

0.00180 0.00778 0.00250 0.00254 0.00233 0.00190 0.00184 

(30,50) 0.00468 0.01289 0.00508 0.00574 0.00520 0.00781 0.00713 

0.00136 0.00591 0.00171 0.00197 0.00180 0.00139 0.00136 

(50,10) 0.00335 0.04639 0.02906 0.00706 0.00830 0.02094 0.01852 

0.00347 0.01634 0.00603 0.00446 0.00432 0.00413 0.00388 

(50,30) 0.00251 0.01704 0.01207 0.00489 0.00469 0.00826 0.00745 

0.00148 0.00632 0.00213 0.00201 0.00184 0.00157 0.00153 

(50,50) 0.00292 0.01196 0.00715 0.00418 0.00385 0.00626 0.00571 

0.00107 0.00467 0.00147 0.00141 0.00128 0.00111 0.00109 

 

 

 

 

 

 

 

(3,3) 

 

 

 

 

 

 

 

0.027 

(10,10) 0.01013 0.03671 0.01449 0.02504 0.02369 0.02224 0.02147 

0.00124 0.00936 0.00182 0.01164 0.01077 0.00195 0.00184 

(10,30) 0.00841 0.01985 0.00599 0.02293 0.02071 0.01302 0.01272 

0.00078 0.00449 0.00078 0.01155 0.01042 0.00093 0.00091 

(10,50) 0.00825 0.01698 0.00374 0.02210 0.01987 0.01147 0.01123 

0.00071 0.00371 0.00062 0.01130 0.01020 0.00080 0.00078 

(30,10) 0.00493 0.03073 0.01423 0.00733 0.00748 0.01595 0.01541 

0.00065 0.00532 0.00136 0.00102 0.00099 0.00111 0.00106 

(30,30) 0.00343 0.01378 0.00585 0.00484 0.00446 0.00720 0.00704 

0.00029 0.00193 0.00044 0.00058 0.00054 0.00036 0.00036 

(30,50) 0.00303 0.01013 0.00324 0.00394 0.00358 0.00544 0.00533 

0.00022 0.00137 0.00028 0.00048 0.00044 0.00025 0.00025 

(50,10) 0.00435 0.03037 0.01527 0.00657 0.00686 0.01523 0.01473 

0.00057 0.00502 0.00127 0.00074 0.00073 0.00100 0.00095 



12 
 

Continued Table 2 

 

(   ) 

 

True

        

 

(   ) 

Method of estimations 

MLE MME PCE LSE WLSE BESL BELL 

 

(3,3) 

 

0.027 

(50,30) 0.00230 0.01174 0.00603 0.00361 0.00338 0.00585 0.00573 

0.00022 0.00138 0.00036 0.00032 0.00029 0.00028 0.00027 

(50,50) 0.00209 0.00855 0.00374 0.00283 0.00259 0.00431 0.00423 

0.00016 0.00094 0.00023 0.00022 0.00020 0.00019 0.00019 

 

 

 

 

 

 

 

 

 

(1,1) 

 

 

 

 

 

 

 

 

 

0.163 

(10,10) 0.00880 0.03370 0.01817 0.02071 0.02019 0.02103 0.01820 

0.00492 0.01950 0.00629 0.01480 0.01381 0.00531 0.00500 

(10,30) 0.01040 0.01282 0.00471 0.02285 0.02047 0.01273 0.01131 

0.00305 0.01141 0.00333 0.01254 0.01137 0.00302 0.00292 

(10,50) 0.01108 0.00957 0.00035 0.02253 0.01998 0.01141 0.01023 

0.00272 0.00993 0.00280 0.01194 0.01082 0.00263 0.00255 

(30,10) 0.00085 0.03479 0.02131 0.00296 0.00406 0.01477 0.01261 

0.00344 0.01437 0.00523 0.00477 0.00458 0.00382 0.00364 

(30,30) 0.00316 0.01350 0.00876 0.00489 0.00454 0.00724 0.00641 

0.00159 0.00667 0.00215 0.00223 0.00205 0.00164 0.00161 

(30,50) 0.00345 0.00880 0.00392 0.00419 0.00379 0.00554 0.00494 

0.00119 0.00509 0.00149 0.00172 0.00157 0.00120 0.00118 

(50,10) 0.00047 0.03668 0.02462 0.00261 0.00411 0.01478 0.01273 

0.00317 0.01365 0.00506 0.00431 0.00411 0.00356 0.00340 

(50,30) 0.00125 0.01230 0.01034 0.00319 0.00312 0.00569 0.00498 

0.00132 0.00551 0.00184 0.00179 0.00164 0.00137 0.00135 

(50,50) 0.00197 0.00842 0.00602 0.00297 0.00274 0.00442 0.00393 

0.00095 0.00407 0.00127 0.00124 0.00113 0.00097 0.00096 

 

 

Note: The first entry is the simulated about absolute biases. 

          The second entry is the simulated about MSE’s. 
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APPENDIEX A 
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where,  

       

   
 
       

   
 
        

   
  and 

        

   
  are given, respectively, in equations (A.5). 
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