Optimization and Life Cycle Cost of Stand-Alone Hybrid Energy System for Egyptian Isolated Village Using HOMER

Citation:
Gamal Mohamed, R., D. K. Ibrahim, M. M. Abdel Aziz, and H. Rakha, "Optimization and Life Cycle Cost of Stand-Alone Hybrid Energy System for Egyptian Isolated Village Using HOMER", Proceedings of the 15th International Middle East Power Systems Conference, MEPCON 2012; Alexandria, Egypt, December, 23-25, 2012., 2012.

Abstract:

The aim of this paper is to determine the possibility of using a stand-alone hybrid energy system to meet the electric load demand of an isolated area using HOMER Software. The combination of using remote area-diesel generators and renewable energy source such as photovoltaic system (PV) with a battery storage can greatly overcome some of diesel generators problems. In this paper, a PV/Diesel generator hybrid energy system is sized to meet the load with about 100 % availability. HOMER is used to optimize the operation of the diesel generator and to calculate the optimum number of the PV modules and batteries that would achieve the minimum initial cost and a desired depth of discharge for battery storage. As the economic issue is greatly concerned, it is necessary to identify the system life cycle cost or the Total Net Present Cost, TNPC, of the optimal hybrid energy system which can also be achieved by HOMER optimization. For observing the economic and technical feasibility of the designed power system and its economics, it is important to assess the effect of uncertainty or the change of several variables such as solar radiation, interest rate and fuel price which can be carried out by performing several sensitivity analyses.

Notes:

n/a

Tourism