This paper introduces a protection scheme for interconnected networks based on proposed Directional Overcurrent Relays (DOCRs) with user-defined two-level characteristics. By getting usage of the capabilities available in modern digital DOCRs, the proposed relay will have two user-defined characteristics; one for its primary operation and another for its backup operation (two-level characteristics) to fit a specific application or system. The coordination between the proposed relays is formulated and solved as a non-linear optimization problem to minimize their operating time and reduce the thermal impact caused by short circuit currents through electrical equipment while maintaining the technical constraints.
Extensive comparative studies have been performed to ensure the effectiveness of the proposed protection
scheme. Firstly, the performance of the traditional one-level characteristic relay (COLC) with two settings is
compared to the conventional two-level characteristic relay (CTLC) with three settings. Then a further investigation is carried out by suggesting increasing the number of settings to seven, named as the user-defined two-level characteristic relay (UDTLC), and then to nine settings, named as the shifted-user-defined two-level characteristic relay (SUDTLC). Finally, different multi-objective functions with proper weighting factors are investigated to determine the most effective one with the best performance for the proposed idea.
The distribution portion of the IEEE 30-bus system has been used to test and verify the proposed characteristics extensively. The optimal coordination problem is solved using the fmincon function in MATLAB. Based on the achieved results, the proposed characteristics of UDTLC and SUDTLC guaranteed a considerable reduction in operating times. In addition, the achieved results deduced that using a different multi-objective formulation has little impact on reducing operating time due to using the proposed characteristics UDTLC and SUDTLC, which means solving the coordination problem is mainly dependent on the applied characteristics.