Accurate Fault Location Algorithm for Series-Compensated Transmission Lines Using Synchrophasor Measurements

Nasr, A., D. K. Ibrahim, and M. Gilany, "Accurate Fault Location Algorithm for Series-Compensated Transmission Lines Using Synchrophasor Measurements", 17th International Middle East Power Systems Conference, MEPCON 2015; Mansoura University, Egypt, December, 15-17, 2015., 2015.


Reliable and accurate fault location algorithms for series-compensated transmission lines are challenges that arise in most of modern electrical power transmission grids. This paper proposes an accurate fault location algorithm for series-compensated transmission lines. Distributed parameters long transmission line model is used in this study to account for practical travelling waves’ effect during fault incidence. The proposed algorithm uses wavelet transform for only one cycle data window length of post-fault voltage signals to detect the faulted line, then Fast Fourier Transform for voltages and currents signals of three post-fault cycles (including the 1st cycle) to locate the fault. Only positive sequence network is used for the fault location calculations, hence, the algorithm does not depend on the zero sequence parameters (i.e., ground resistivity) which are depending on moisture, temperature, etc. Different types of grounded and ungrounded faults, fault locations, fault resistances, fault inception angles are applied to validate the robustness of the algorithm. The algorithm is tested using a real case study for a 380 kV, 400 km series compensated transmission line in Saudi Arabia using MATLAB and SIMULINK software. Extensive Simulation results show the effectiveness and robustness of the proposed algorithm under various fault conditions.