Publications

Export 22 results:
Sort by: Author Title Type [ Year  (Desc)]
2023
Shafik, M. S., D. M. El-Tanbouly, A. Bishr, and A. S. Attia, "Insights into the role of PHLPP2/Akt/GSK3β/Fyn kinase/Nrf2 trajectory in the reno-protective effect of rosuvastatin against colistin-induced acute kidney injury in rats.", The Journal of pharmacy and pharmacology, 2023. Abstract

OBJECTIVES: Oxidative stress-mediated colistin's nephrotoxicity is associated with the diminished activity of nuclear factor erythroid 2-related factor 2 (Nrf2) that is primarily correlated with cellular PH domain and leucine-rich repeat protein phosphatase (PHLPP2) levels. This study investigated the possible modulation of PHLPP2/protein kinase B (Akt) trajectory as a critical regulator of Nrf2 stability by rosuvastatin (RST) to guard against colistin-induced oxidative renal damage in rats.

METHODS: Colistin (300,000 IU/kg/day; i.p.) was injected for 6 consecutive days, and rats were treated simultaneously with RST orally at 10 or 20 mg/kg.

KEY FINDINGS: RST enhanced renal nuclear Nrf2 translocation as revealed by immunohistochemical staining to boost the renal antioxidants, superoxide dismutase (SOD) and reduced glutathione (GSH) along with a marked reduction in caspase-3. Accordingly, rats treated with RST showed significant restoration of normal renal function and histological features. On the molecular level, RST effectively decreased the mRNA expression of PHLPP2 to promote Akt phosphorylation. Consequently, it deactivated GSK-3β and reduced the gene expression of Fyn kinase in renal tissues.

CONCLUSIONS: RST could attenuate colistin-induced oxidative acute kidney injury via its suppressive effect on PHLPP2 to endorse Nrf2 activity through modulating Akt/GSK3 β/Fyn kinase trajectory.

Shafik, M. S., A. Bishr, D. M. El-Tanbouly, and A. S. Attia, "Modulation of miR-205/ EGLN2 by rosuvastatin mitigates colistin-induced nephrotoxicity in rats: Involvement of ATF4/ CHOP and Nrf2 pathways.", Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol. 157, pp. 114042, 2023. Abstract

Although the beneficial role of microRNA has been investigated thoroughly, the reno-protective role of microRNA-205 (miR-205) against colistin-induced nephrotoxicity has not yet been tackled. Hence, our study sought to study the possible modulatory effect of rosuvastatin on miR-205 and its downstream target, Egl-9 family hypoxia-inducible factor 2 (EGLN2) to combat oxidative and endoplasmic reticulum (ER) stresses as pivotal contributors to colistin-associated renal injury. Rats were randomly divided into four groups; normal, colistin (300 000 IU/Kg/day; i.p), colistin pretreated with rosuvastatin (10 mg/kg; p.o) and colistin pretreated with rosuvastatin (20 mg/kg; p.o) for 6 successive days. Pretreatment with rosuvastatin attenuated renal injury induced by colistin and enhanced kidney function with a marked reduction in renal injury markers, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Besides, rosuvastatin upregulated renal miR-205 expression and suppressed gene expression of EGLN2. In addition, it downregulated ER stress-related genes (activation transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP)) along with caspases 12 and 3. It also induced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) as detected by immunohistochemical examination besides increased renal antioxidants, reduced glutathione, and superoxide dismutase. In conclusion, rosuvastatin triggered a series of protective mechanisms against colistin-induced nephrotoxicity through modulating miR-205 and EGLN2 expression. Rosuvastatin suppressed ATF4/ CHOP trajectory and activated the Nrf2 pathway to substantiate its antioxidant and anti-apoptotic capacities.

El-Deeb, A. M., A. F. Mohamed, M. F. El-Yamany, and D. M. El-Tanbouly, "Novel trajectories of the NK1R antagonist aprepitant in rotenone-induced Parkinsonism-like symptoms in rats: Involvement of ERK5/KLF4/p62/Nrf2 signaling axis.", Chemico-biological interactions, vol. 380, pp. 110562, 2023. Abstract

Regulation of the interplay between autophagy and oxidative stress is vital in maintaining neuronal homeostasis during neurotoxicity. The interesting involvement of NK1 receptor (NK1R) in neurodegeneration has highlighted the value of investigating the neuroprotective effect of aprepitant (Aprep), an NK1R antagonist in Parkinson's disease (PD). This study was conducted to disclose Aprep's ability to modulate extracellular signal-regulated kinase 5/Krüppel-like factor 4 (ERK5/KLF4) cue as molecular signaling implicated in regulating autophagy and redox signaling in response to rotenone neurotoxicity. Rotenone (1.5 mg/kg) was administered on alternate days, and rats were given Aprep simultaneously with or without PD98059, an ERK inhibitor, for 21 days. Aprep ameliorated motor deficits as verified by restored histological features, and intact neurons count in SN and striata along with tyrosine hydroxylase immunoreactivity in SN. The molecular signaling of Aprep was illustrated by the expression of KLF4 following the phosphorylation of its upstream target, ERK5. Nuclear factor erythroid 2-related factor 2 (Nrf2) was up-regulated, shifting the oxidant/antioxidant balance towards the antioxidant side, as evidenced by elevated GSH and suppressed MDA levels. In parallel, Aprep noticeably reduced phosphorylated α-synuclein aggregates due to autophagy induction as emphasized by marked LC3II/LC3I elevation and p62 level reduction. These effects were diminished upon PD98059 pre-administration. In conclusion, Aprep showed neuroprotective effects against rotenone-induced PD, which may be partially attributed to the activation of the ERK5/KLF4 signaling pathway. It modulated p62-mediated autophagy and Nrf2 axis which act cooperatively to counter rotenone-associated neurotoxicity pointing to Aprep's prospect as a curious candidate in PD research.

2022
Ahmedy, O. A., T. M. Abdelghany, M. E. A. El-Shamarka, M. A. Khattab, and D. M. El-Tanbouly, "Apigenin attenuates LPS-induced neurotoxicity and cognitive impairment in mice via promoting mitochondrial fusion/mitophagy: role of SIRT3/PINK1/Parkin pathway.", Psychopharmacology, vol. 239, issue 12, pp. 3903-3917, 2022. Abstract

RATIONALE: Alteration of the NAD metabolic pathway is proposed to be implicated in lipopolysaccharide (LPS)-induced neurotoxicity and mitochondrial dysfunction in neurodegenerative diseases. Apigenin, a naturally-occurring flavonoid, has been reported to maintain NAD levels and to preserve various metabolic functions.

OBJECTIVES: This study aimed to explore the effect of apigenin on mitochondrial SIRT3 activity as a mediator through which it could modulate mitochondrial quality control and to protect against intracerebrovascular ICV/LPS-induced neurotoxicity.

METHODS: Mice received apigenin (40 mg/kg; p.o) for 7 consecutive days. One hour after the last dose, LPS (12 µg/kg, icv) was administered.

RESULTS: Apigenin robustly guarded against neuronal degenerative changes and maintained a normal count of intact neurons in mice hippocampi. Consequently, it inhibited the deleterious effect of LPS on cognitive functions. Apigenin was effective in preserving the NAD/NADH ratio to boost mitochondrial sirtuin-3 (SIRT3), activity, and ATP production. It conserved normal mitochondrial features via induction of the master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α), along with mitochondrial transcription factor A (TFAM) and the fusion proteins, mitofusin 2 (MFN2), and optic atrophy-1 (OPA1). Furthermore, it increased phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and parkin expression as well as the microtubule-associated protein 1 light chain 3 II/I ratio (LC3II/I) to induce degradation of unhealthy mitochondria via mitophagy.

CONCLUSIONS: These observations reveal the marked neuroprotective potential of apigenin against LPS-induced neurotoxicity through inhibition of NAD depletion and activation of SIRT3 to maintain adequate mitochondrial homeostasis and function.

El-Deeb, N. K., D. M. El-Tanbouly, M. A. Khattab, M. F. El-Yamany, and A. F. Mohamed, "Crosstalk between PI3K/AKT/KLF4 signaling and microglia M1/M2 polarization as a novel mechanistic approach towards flibanserin repositioning in parkinson's disease.", International immunopharmacology, vol. 112, pp. 109191, 2022. Abstract

Balancing microglia M1/M2 polarization has been shown as a prospective therapeutic strategy for Parkinson's disease (PD). Various vital signaling pathways are likely to govern the microglial phenotype. The implication of 5HT1A receptors in neurodegenerative disorders has raised interest in exploring the repositioning of flibanserin (Flib), a 5HT1A agonist, as an effective neuroprotective agent for PD. Therefore, this study was designed to assess the ability of Flib to modulate microglia phenotype switching from M1 to M2 via PI3K/AKT downstream targets in a rotenone model of PD. Rats received rotenone (1.5 mg/kg) every other day and were concurrently treated with Flib (40 mg/kg/day) with or without wortmannin (15 μg/kg/day), a PI3K inhibitor, for 21 days. Flib improved the motor perturbations induced by rotenone, as confirmed by the reversion of histopathological damage and tyrosine hydroxylase immunohistochemical alterations in both the striata and substantia nigra. The molecular signaling of Flib was elaborated by inducing striatal AKT phosphorylation and the expression of its substantial target, KLF4. Flib induced STAT6 phosphorylation to promote M2 polarization as demonstrated by the increased CD163 microglial count with striatal arginase activity. In parallel, it markedly inhibited M1 activation as evidenced by the reduction in CD86 microglia count with striatal proinflammatory mediators, IL-1β and iNOS. The pre-administration of wortmannin mostly negated Flib's neuroprotective effects. In conclusion, Flib AKT/ KLF4-dependently amended M1/M2 microglial imbalance to exert a promising neuroprotective effect, highlighting its potential as a revolutionary candidate for conquering PD.

Ahmedy, O. A., D. M. El-Tanbouly, A. K. Al-Mokaddem, and Y. A. M. El-Said, "Insights into the role of P2X7R/DUSP6/ERK1/2 and SIRT2/MDM2 signaling in the nephroprotective effect of berberine against cisplatin-induced renal fibrosis in rats.", Life sciences, vol. 309, pp. 121040, 2022. Abstract

AIMS: Several signaling events have been identified for mediating cisplatin-induced chronic inflammation and progressive renal fibrosis, but the majority of them have not yet been established as therapeutic targets. This study investigated the modulatory effects of berberine on purinergic 2X7 receptors (P2X7R) and some potential intracellular profibrogenic signaling as molecular mechanisms that could hinder renal fibrosis associated with cisplatin administration in rats.

MAIN METHODS: For induction of kidney injury, rats were injected with cisplatin (1 mg/kg, i.p.) daily for two weeks. Concurrently, the rats were treated with berberine (100 or 200 mg/kg, p.o). The gene expressions of P2X7R, dual-specificity phosphatase 6 (DUSP6), and murine double-minute 2 (MDM2) were determined. The expressions of alpha smooth-muscle actin and tumor necrosis factor alpha (TNF-α) were assessed by immunohistochemical staining. Phosphorylated extracellular signal-regulated kinase 1/2, (p-ERK1/2) was evaluated by western blotting. Sirtuin 2 (SIRT2), kidney injury molecule-1, and galectin-3 were measured by enzyme-linked immunosorbent assay. The degree of renal fibrosis was assessed by microscopic examination and picrosirius red staining.

KEY FINDINGS: Berberine effectively inhibited cisplatin-induced renal histopathological changes, enhanced renal function, and markedly mitigated inflammatory and fibrotic alterations as well as TNF-α protein expression. Additionally, P2X7R, p-ERK1/2, MDM2, and SIRT2 were suppressed and DUSP6 was upregulated by berberine.

SIGNIFICANCE: The nephroprotective effects of berberine were mediated in part by downregulating P2X7R and modulating DUSP6-mediated inactivation of ERK1/2 as well as by suppressing SIRT2/MDM2-triggered renal fibrosis.

Hussien, Y. A., D. I. N. A. F. Mansour, S. A. Nada, S. A. S. El-Rahman, R. M. Abdelsalam, A. S. Attia, and D. M. El-Tanbouly, "Linagliptin attenuates thioacetamide-induced hepatic encephalopathy in rats: Modulation of C/EBP-β and CX3CL1/Fractalkine, neuro-inflammation, oxidative stress and behavioral defects", Life Sciences, vol. 295, pp. 120378, 2022.
Kamel, N. M., D. M. El-Tanbouly, D. M. Abdallah, and H. M. Sayed, "PAR1, a therapeutic target for remote lung injury associated with hind limb ischemia/reperfusion: ERK5/KLF2-dependent lung capillary barrier preservation", Chem Biol Interact , vol. 354, pp. 109809, 2022.
Nasser, A. H., A. M. Gendy, M. F. El-Yamany, and D. M. El-Tanbouly, "Upregulation of neuronal progranulin mediates the antinociceptive effect of trimetazidine in paclitaxel-induced peripheral neuropathy: Role of ERK1/2 signaling", Toxicology and Applied Pharmacology , vol. 448, pp. 116096, 2022.
2021
Ahmed, L. A., A. F. Mohamed, E. A. A. El-Haleim, and D. E. - T. M., "Boosting Akt Pathway by Rupatadine Modulates Th17/Tregs Balance for Attenuation of Isoproterenol-Induced Heart Failure in Rats", Front Pharmacol , vol. 12, pp. 651150, 2021.
Ashour, N. H., D. M. El-Tanbouly, N. E. S. Sayed, and M. M. Khattab, "Roflumilast ameliorates cognitive deficits in a mouse model of amyloidogenesis and tauopathy: Involvement of nitric oxide status, Aβ extrusion transporter ABCB1, and reversal by PKA inhibitor H89", Prog Neuropsychopharmacol Biol Psychiatry ., vol. 111, pp. 110366, 2021.
Al-Shorbagy, M. Y., W. Wadie, and D. M. El-Tanbouly, "Trimetazidine Modulates Mitochondrial Redox Status and Disrupted Glutamate Homeostasis in a Rat Model of Epilepsy", Front Pharmacol , vol. 12, pp. 735165, 2021.
2020
Mohamed, Y. S., R. M. Abdelsalam, A. S. Attia, M. T. Abdel-Aziz, and D. M. El-Tanbouly, "Regulation of liver regeneration by prostaglandin E 2 and thromboxane A 2 following partial hepatectomy in rats", Naunyn Schmiedebergs Arch Pharmacol, vol. 393, issue 8, pp. 1437-1446, 2020.
2019
Zaki, H. F., R. M. Abdelsalam, D. M. El-Tanbouly, and A. M. Zaki, "Anti-inflammatory and Anti-apoptotic Potentials of Apigenin against Liver Injury Induced by Ischemia-Reperfusion in Rats", bulletin of faculty of pharmacy cairo university, vol. 57, issue 1, pp. 46-54, 2019.
2018
Zaki, A. M., D. M. El-Tanbouly, R. M. Abdelsalam, and H. F. Zaki, "Plumbagin ameliorates hepatic ischemia-reperfusion injury in rats: Role of high mobility group box 1 in inflammation, oxidative stress and apoptosis.", Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol. 106, pp. 785-793, 2018 Oct. Abstract

Ischemia-reperfusion (I/R) injury is a pathological process which magnifies with the ensuing inflammatory response and endures with the increase of oxidants especially during reperfusion. The present study was conducted to assess the possible modulatory effects of plumbagin, the active constituent extracted from the roots of traditional medicinal plant Plumbago zeylanica L., on the dire role of high mobility group box 1 (HMGB1) as well as the associated inflammation, oxidative stress and apoptotic cell death following hepatic I/R. Four groups of rats were included: sham-operated, sham-operated treated with plumbagin, I/R (30 min ischemia and 1 h reperfusion) and I/R treated with plumbagin. Pretreatment with plumbagin markedly improved hepatic function and structural integrity compared to the I/R group, as manifested by depressed plasma transaminases and lactate dehydrogenase (LDH) activities as well as alleviated tissue pathological lesions. Plumbagin prominently hampered HMGB1 expression and subsequently quelled inflammatory cascades, as nuclear factor κB (NF-κB), tumor necrosis factor-alpha (TNF-α) and myeloperoxidase (MPO) activity. It also interrupted reactive oxygen species (ROS)-HMGB1loop as evident by restored liver reduced glutathione (GSH), elevated glutathione peroxidase (GPx) activity, along with decreased liver lipid peroxidation. Simultaneously, plumbagin significantly ameliorated apoptosis by amending the mRNA expressions of both anti-apoptotic (Bcl-2) and pro-apoptotic (Bax). The present results revealed that plumbagin is endowed with hepatoprotective activity ascribed to its antioxidant, anti-inflammatory and anti-apoptotic properties which are partially mediated through dampening of HMGB1 expression.

Elbaz, E. M., M. A. Senousy, D. M. El-Tanbouly, and R. H. Sayed, "Neuroprotective effect of linagliptin against cuprizone-induced demyelination and behavioural dysfunction in mice: A pivotal role of AMPK/SIRT1 and JAK2/STAT3/NF-κB signalling pathway modulation.", Toxicology and applied pharmacology, vol. 352, pp. 153-161, 2018 Aug 01. Abstract

Multiple sclerosis is a chronic inflammatory demyelinating central nervous system disorder leading to serious neurological deficits. Linagliptin, a dipeptidyl peptidase-4 inhibitor, recently showed neuroprotective properties against neurodegenerative diseases. This study investigated the possible neuroprotective effect of linagliptin against cuprizone-induced demyelination in mice and its potential early-remyelinating properties. C57Bl/6 mice were fed chow containing 0.7% cuprizone for 1 week, followed by 3 weeks of a 0.2% cuprizone diet. Linagliptin (10 mg/kg/day, p.o.) was given for 3 weeks starting from the second week. Linagliptin treatment improved behavioural and motor abnormalities induced by cuprizone, as demonstrated by open field, rotarod and grip strength tests. In parallel, linagliptin lessened the demyelination through enhancing Olig2 gene expression, as shown by increased myelin basic protein, myelin proteolipid protein levels and Luxol fast blue-staining intensity. Linagliptin attenuated cuprizone-induced oxidative stress by decreasing brain thiobarbituric acid reactive substances along with restoring reduced glutathione levels. Linagliptin exerted an anti-inflammatory effect by reducing brain tumor necrosis factor-alpha. Interestingly, linagliptin diminished phosphorylated JAK2, phosphorylated STAT3 and NF-κB p65 protein expression while up-regulating phosphorylated AMP-activated protein kinase (p-AMPK) protein and SIRT1 gene expression levels. In conclusion, linagliptin exerted a neuroprotective effect in mice with cuprizone-induced demyelination possibly by modulating AMPK/SIRT1 and JAK2/STAT3/NF-κB signalling pathways.

Shalaby, H. N., D. M. El-Tanbouly, and H. F. Zaki, "Topiramate mitigates 3-nitropropionic acid-induced striatal neurotoxicity via modulation of AMPA receptors.", Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, vol. 118, pp. 227-234, 2018 Aug. Abstract

Prevalence of glutamate receptor subunit 2 (GluR2)-lacking alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors is a hallmark of excitotoxicity-related neurodegenerative diseases. Topiramate (TPM) is a structurally novel anticonvulsant with a well-known modulatory effects on AMPA/kainate subtypes of glutamate receptors. The present study aimed at investigating the neuroprotective potential of TPM on 3-nitropropionic acid (3-NP)-induced striatal neurodegeneration and Huntington's disease-like symptoms. Rats were injected with 3-NP (10 mg/kg/i.p.) for 14 days. TPM (50 mg/kg/p.o.) was given once a day, 1 h before 3-NP. TPM amended 3-NP induced changes in neurobehavioral performance, striatal neurotransmitters levels and histopathological injury. 3-NP control rats showed a significant ablation in the mRNA expression of Ca-impermeable Glu2R subunit along with an elevation in its regulatory protein (protein interacting with C kinase-1) PICK1, an effect that was largely reversed by TPM. TPM in addition, enhanced the phosphorylation of the protein kinase B/glycogen synthase kinase-3β/cAMP response element binding protein (Akt/GSK-3β/CREB) cue. Moreover, improvement in oxidative status, suppression of caspase-3 activity and restoration of striatal BDNF were noticed following treatment with TPM. The current study revealed that TPM boosted the neuroprotective (Akt/GSK-3β/CREB) pathway by its negative modulatory effect on AMPA glutamate receptors as well as its direct antioxidant property.

El-Abhar, H., M. A. E. A. Fattah, W. Wadie, and D. M. El-Tanbouly, "Cilostazol disrupts TLR-4, Akt/GSK-3β/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington's disease", Plos One, vol. 13, issue 9, pp. :e0203837, 2018.
2017
Wadie, W., and D. M. El-Tanbouly, "Vinpocetine mitigates proteinuria and podocytes injury in a rat model of diabetic nephropathy.", European journal of pharmacology, vol. 814, pp. 187-195, 2017 Nov 05. Abstract

Podocyte injury and glomerular basement membrane thickening have been considered as essential pathophysiological events in diabetic nephropathy. The aim of this study was to investigate the possible beneficial effects of vinpocetine on diabetes-associated renal damage. Male Wistar rats were made diabetic by injection of streptozotocin (STZ). Diabetic rats were treated with vinpocetine in a dose of 20mg/kg/day for 6 weeks. Treatment with vinpocetine resulted in a marked decrease in the levels of blood glucose, glycosylated haemoglobin, creatinine, blood urea nitrogen, urinary albumin and albumin/creatinine ratio along with an elevation in creatinine clearance rate. The renal contents of advanced glycation end-products, interleukin-10, tissue growth factor-β, nuclear factor (NF)-κB and Ras-related C3 botulinum toxin substrate 1 (Rac 1) were decreased. Renal nephrin and podocin contents were increased and their mRNA expressions were replenished in vinpocetine-treated rats. Moreover, administration of vinpocetine showed improvements in oxidative status as well as renal glomerular and tubular structures. The current investigation revealed that vinpocetine ameliorated the STZ-induced renal damage. This beneficial effect could be attributed to its antioxidant and antihyperglycemic effects parallel to its ability to inhibit NF-κB which eventually modulated cytokines production as well as nephrin and podocin proteins expression.

El-Tanbouly, D. M., W. Wadie, and R. H. Sayed, "Modulation of TGF-β/Smad and ERK signaling pathways mediates the anti-fibrotic effect of mirtazapine in mice.", Toxicology and applied pharmacology, vol. 329, pp. 224-230, 2017 08 15. Abstract

Serotonin (5-HT) has been implicated as a key driver of liver fibrosis, acting via 5-HT2 receptor activation in the hepatic stellate cells. The current study was conducted to investigate the effects of mirtazapine, a 5-HT2A antagonist, in a mouse model of liver fibrosis. Mice received thioacetamide (TAA, 150mg/kg/biweekly, ip) for nine successive weeks for induction of liver fibrosis. Administration of mirtazapine significantly improved the plasma aminotransferases, reduced hepatic 5-HT concentration and ameliorated TAA-induced liver fibrosis, as demonstrated by reduced portal blood pressure, liver procollagen I content and α alpha smooth muscle actin expression. Moreover, hepatic collagen deposition was markedly decreased in mirtazapine-treated mice as evaluated by Masson's trichrome staining. Mirtazapine provided an antifibrotic environment by decreasing the liver content of transforming growth factor-β1 (TGF-β1), and protein kinase C as well as the expression of phosphorylated-Smad3 (p-Smad) and phosphorylated extracellular signal-regulated kinases 1 and 2 (p-ERK1/2). Additionally, oxidative stress was largely mitigated by mirtazapine as manifested by decreased liver lipid peroxidation and NADPH oxidase 1 along with glutathione replenishment. The current study indicates that mirtazapine suppressed 5-HT-mediated TGF-β1/Smad3 and ERK1/2 signaling pathways as well as oxidative stress that contribute to the progression of liver fibrosis.

2015
El-Tanbouly, D. M., R. M. Abdelsalam, A. S. Attia, and M. T. Abdel-Aziz, "Pretreatment with magnesium ameliorates lipopolysaccharide-induced liver injury in mice.", Pharmacological reports : PR, vol. 67, issue 5, pp. 914-20, 2015 Oct. Abstractmy_paper_1.pdf

BACKGROUND: Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, is involved in the pathogenesis of sepsis. LPS administration induces systemic inflammation that mimics many of the initial clinical features of sepsis and has deleterious effects on several organs including the liver and eventually leading to septic shock and death. The present study aimed to investigate the protective effect of magnesium (Mg), a well known cofactor in many enzymatic reactions and a critical component of the antioxidant system, on hepatic damage associated with LPS-induced endotoxima in mice.

METHODS: Mg (20 and 40mg/kg, po) was administered for 7 consecutive days. Systemic inflammation was induced 1h after the last dose of Mg by a single dose of LPS (2mg/kg, ip) and 3h thereafter plasma was separated, animals were sacrificed and their livers were isolated.

RESULTS: LPS-treated mice suffered from hepatic dysfunction revealed by histological observation, elevation in plasma transaminases activities, C-reactive protein content and caspase-3, a critical marker of apoptosis. Liver inflammation was evident by elevation in liver cytokines contents (TNF-α and IL-10) and MPO activity. Additionally, oxidative stress was manifested by increased liver lipoperoxidation, glutathione depletion, elevated total nitrate/nitrite (NOx) content and glutathione peroxidase (GPx) activity. Pretreatment with Mg largely mitigated these alternations.

CONCLUSION: Pretreatment with Mg protects the liver from the acute injury which occurs shortly after septicemia.

El-Tanbouly, D. M., R. M. Abdelsalam, A. S. Attia, and M. T. Abdel-Aziz, "Pretreatment with magnesium ameliorates lipopolysaccharide-induced liver injury in mice.", Pharmacological reports : PR, vol. 67, issue 5, pp. 914-20, 2015 Oct. Abstract

BACKGROUND: Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, is involved in the pathogenesis of sepsis. LPS administration induces systemic inflammation that mimics many of the initial clinical features of sepsis and has deleterious effects on several organs including the liver and eventually leading to septic shock and death. The present study aimed to investigate the protective effect of magnesium (Mg), a well known cofactor in many enzymatic reactions and a critical component of the antioxidant system, on hepatic damage associated with LPS-induced endotoxima in mice.

METHODS: Mg (20 and 40mg/kg, po) was administered for 7 consecutive days. Systemic inflammation was induced 1h after the last dose of Mg by a single dose of LPS (2mg/kg, ip) and 3h thereafter plasma was separated, animals were sacrificed and their livers were isolated.

RESULTS: LPS-treated mice suffered from hepatic dysfunction revealed by histological observation, elevation in plasma transaminases activities, C-reactive protein content and caspase-3, a critical marker of apoptosis. Liver inflammation was evident by elevation in liver cytokines contents (TNF-α and IL-10) and MPO activity. Additionally, oxidative stress was manifested by increased liver lipoperoxidation, glutathione depletion, elevated total nitrate/nitrite (NOx) content and glutathione peroxidase (GPx) activity. Pretreatment with Mg largely mitigated these alternations.

CONCLUSION: Pretreatment with Mg protects the liver from the acute injury which occurs shortly after septicemia.