Brain targeted solid lipid nanoparticles for brain ischemia: preparation and in vitro characterization.

Brain targeted solid lipid nanoparticles for brain ischemia: preparation and in vitro characterization., Morsi, Nadia M., Ghorab Dalia M., and Badie Hany A. , Pharmaceutical development and technology, 2013 May-Jun, Volume 18, Issue 3, p.736-44, (2013)


This study aims at formulating solid lipid nanoparticles (SLNs) of Vinpocetine (VIN) to be used as a brain targeted sustained drug-delivery system. VIN is a derivative of vincamine alkaloid, used for chronic cerebral vascular ischemia. However, it suffers from low bioavailability and short half-life. Its oral bioavailability is recorded to be between 7 and 55%. Its elimination half-life is 1-2 h so it would be a good candidate for a sustained drug-delivery system. VIN SLNs were prepared using modified high shear homogenization followed by ultrasonication technique. The effect of incorporating different lipids at different concentrations of various surfactants was investigated. The VIN SLNs were characterized by entrapment efficiency percent (EE%), particle size distribution, zeta-potential, and cumulative released percent after 96 h. The EE% ranged between 83.34% ± 0.95-94.56% ± 0.11 due to the lipophilic character of VIN. The mean particle size measured ranged from 123 nm-464 nm. The cumulative released percent after 96 h ranged from 23.55% to 75.67% showing a controlled release profile. Formula (F32) composed of 5% glyceryl monostearate (GMS) and stabilized by 2% surfactant mixture [Tween 80, Pluronic F 68 (1:1)] was the most appropriate formula for brain delivery having EE% of 89.09% ± 1.49, zero-order release kinetics with cumulative released percent of 72.12% after 96 h, zeta-potential of -11.3 ± 0.97 mV. It showed a unimodal size distribution with particle size ≈ 90 nm and polydispersity index of 0.121. The formula of choice in this study exhibited a zero-order sustained release profile and met the requirement for a brain targeted SLN so it could be a promising formula to deliver VIN to the brain.