El-Gendy, Z. A., S. Abdelazeem, G. A. Abdel Jaleel, M. E. Ali, A. Mohamed, A. Salah, and M. A. Raslan, "Anti-inflammatory and anti-rheumatic effects of Phoenix dactylifera L. (date palm) seed by controlling cytokines and inhibiting JAK1/STAT3 pathway on CFA-induced arthritis rat and its phytochemical profiling.", Journal of ethnopharmacology, vol. 329, pp. 118138, 2024. Abstract

ETHNOPHARMACOLOGICAL RELEVANCE: Phoenix dactylifera L. (date palm) seed is widely used in Arabian traditional medicine to alleviate several health problems including inflammatory conditions. The herbal tea of date palm seed has been consumed by rheumatoid patients to relief their symptoms.

AIM OF THE STUDY: The purpose of this study was to investigate the claimed beneficial use of P. dactylifera L. (Sewy variety) seed (PDS) in the treatment of rheumatoid arthritis (RA) and its mechanism of action as well as to study its phytoconstituents.

MATERIALS AND METHODS: The anti-inflammatory and anti-oxidative properties of the non-polar and the polar extracts of PDS were studied using Complete Freund's adjuvant (CFA)-induced arthritis rat model. Paw edema, body weight, total nitrate/nitrite NO content and cytokine markers were evaluated to monitor the progress of arthritis. Also, histological examination and thermal analysis were conducted. The phytoconstituent profiles of non-polar and polar extracts of PDS were investigated using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The multiple reactions monitoring mode (MRM) of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used to quantify phenolic phytoconstituents in both extracts.

RESULTS: According to the findings, the polar and non-polar PDS extracts kept body weight comparable to those of healthy individuals while considerably lowering paw swelling, edema, and neutrophil infiltration. It also reduced the levels of Nuclear Factor Kappa B (NF-κB), Tumor Necrosis Factor Alpha (TNF-α), Interleukin 22, Interleukin 23, Interferon (IFN), Interleukin 17, Interleukin 1β, Interleukin 6, Interleukin 36, Janus Kinase 1 (JAK1), and Signal Transducer and Activator of Transcription 3 (STAT3). They also reduced the degenerative alterations caused by RA. Thermal research gave additional support for these findings. 83 phytoconstituents were identified in the non-polar PDS extract and 86 phytoconstituents were identified in the polar PDS extract. 74 of the identified phytoconstituents were common in both extracts. 33 phytoconstituents were identified here from P. dactylifera for the first time as far as we know. In MRM-LC-ESI-MS/MS analysis, the major phenolics in both extracts were chlorogenic acid, naringenin, and vanillin. Catechin was only detected in the non-polar PDS extract. On the other hand, apigenin, kaempferol, and hesperetin were only detected in the polar PDS extract. Generally, the polar PDS extract showed higher concentrations of the identified phenolics than the non-polar extract.

CONCLUSIONS: The PDS extracts especially the non-polar extract showed significant anti-inflammatory and anti-oxidative properties in the CFA-induced arthritis rat model. PDS might be used to produce RA medicines.

Makled, S., H. Abbas, M. E. Ali, and M. Zewail, "Melatonin hyalurosomes in collagen thermosensitive gel as a potential repurposing approach for rheumatoid arthritis management via the intra-articular route.", International journal of pharmaceutics, vol. 661, pp. 124449, 2024. Abstract

Despite the fact that several rheumatoid arthritis treatments have been utilized, none of them achieved complete joint healing and has been accompanied by several side effects that compromise patient compliance. This study aims to provide an effective safe RA treatment with minimum side effects through the encapsulation of melatonin (MEL) in hyalurosomes and loading these hyalurosomes in collagen thermos-sensitive poloxamer 407 (PCO) hydrogels, followed by their intra-articular administration in AIA model rats. In vitro characterization of MEL-hyalurosomes and PCO hydrogel along with in vivo evaluation of the selected formulation were conducted. Particle size, PDI and EE % of the selected formulation were 71.5 nm, 0.09 and 90 %. TEM micrographs demonstrated that the particles had spherical shape with no aggregation signs. Loading PCO hydrogels with MEL-hyalurosomes did not cause significant changes in pH although it increased its viscosity and injection time. FTIR analysis showed that no interactions were noted among the delivery system components. In vivo results revealed the superior effect of MEL-hyalurosomes PCO hydrogel over MEL-PCO hydrogel and blank PCO hydrogels in improving joint healing, cartilage repair, pannus formation and cell infiltrations. Also, MEL-hyalurosomes PCO hydrogel group showed comparable levels of TNF-α, IL1, MDA, NRF2 and HO-1 with the negative control group. These findings highlight the MEL encapsulation role in augmenting its pharmacological effects along with the synergistic effect of hyaluronic acid in hyalurosomes and collagen in PCO hydrogel in promoting joint healing.

El-Shiekh, R. A., M. R. Meselhy, R. Elshimy, Marwa A Ibrahim, M. E. Ali, and E. I. Hassanen, "Plumieride as a novel anti-fungal and anti-inflammatory iridoid against superficial candidiasis in mice.", BMC complementary medicine and therapies, vol. 24, issue 1, pp. 224, 2024. Abstract

In the past few decades, there has been a notable rise in the occurrence of several types of candidiasis. Candida albicans is the most common cause of superficial fungal infections in humans. In this study, plumieride, one of the major iridoids from Plumeria obtusa L. leaves, was isolated and investigated for its potential against Candida albicans (CA)-induced dermatitis in mice. qRT-PCR was done to assess the impact of plumieride on the expression of the major virulence genes of CA. Five groups (n = 7) of adult male BALB/c mice were categorized into: group I: non-infected mice; group II: mice infected intradermally with 10-10 CFU/mL of CA; group III: CA-infected mice treated with standard fluconazole (50 mg/kg bwt.); group IV and V: CA-infected mice treated with plumieride (25- and 50 mg/kg. bwt., respectively). All the treatments were subcutaneously injected once a day for 3 days. Skin samples were collected on the 4th day post-inoculation to perform pathological, microbial, and molecular studies. The results of the in vitro study proved that plumieride has better antifungal activity than fluconazole, manifested by a wider zone of inhibition and a lower MIC. Plumieride also downregulated the expression of CA virulence genes (ALS1, Plb1, and Hyr1). CA-infected mice showed extensive dermatitis, confirmed by strong iNOS, TNF-α, IL-1β, and NF-κB genes or immune expressions. Whereas the treatment of CA-infected mice with plumieride significantly reduced the microscopic skin lesions and modulated the expression of all measured proinflammatory cytokines and inflammatory markers in a dose-dependent manner. Plumieride interfered with the expression of C. albicans virulence factors and modulated the inflammatory response in the skin of mice infected with CA.

Abdel-Reheim, M. A., M. E. Ali, A. G. A. Gaafar, and A. A. Ashour, "Quillaja saponin mitigates methotrexate-provoked renal injury; insight into Nrf-2/Keap-1 pathway modulation with suppression of oxidative stress and inflammation.", Journal of pharmaceutical health care and sciences, vol. 10, issue 1, pp. 17, 2024. Abstract

BACKGROUND: Methotrexate (MTX) is an antineoplastic/immunosuppressive drug, whose clinical use is impeded owing to its serious adverse effects; one of which is acute kidney injury (AKI). Most of MTX complications emerged from the provoked pro-oxidant-, pro-inflammatory- and pro-apoptotic effects. Quillaja saponaria bark saponin (QBS) is a bioactive triterpene that has been traditionally used as an antitussive, anti-inflammatory supplement, and to boost the immune system due to its potent antioxidant- and anti-inflammatory activities. However, the protective/therapeutic potential of QBS against AKI has not been previously evaluated. This study aimed to assess the modulatory effect of QBS on MTX-induced reno-toxicity.

METHODS: Thirty-two male rats were divided into 4-groups. Control rats received oral saline (group-I). In group-II, rats administered QBS orally for 10-days. In group-III, rats were injected with single i.p. MTX (20 mg/kg) on day-5. Rats in group-IV received QBS and MTX. Serum BUN/creatinine levels were measured, as kidney-damage-indicating biomarkers. Renal malondialdehyde (MDA), reduced-glutathione (GSH) and nitric-oxide (NO) were determined, as oxidative-stress indices. Renal expression of TNF-α protein and Nrf-2/Keap-1 mRNAs were evaluated as regulators of inflammation. Renal Bcl-2/cleaved caspase-3 immunoreactivities were evaluated as apoptosis indicators.

RESULTS: Exaggerated kidney injury upon MTX treatment was evidenced histologically and biochemically. QBS attenuated MTX-mediated renal degeneration, oxidant-burden enhancement, excessive inflammation, and proapoptotic induction. Histopathological analysis further confirmed the reno-protective microenvironment rendered by QBS.

CONCLUSIONS: In conclusion, our results suggest the prophylactic and/or therapeutic effects of QBS in treating MTX-induced AKI. Such reno-protection is most-likely mediated via Nrf-2 induction that interferes with oxidant load, inflammatory pathways, and proapoptotic signaling.

Abd El-Rahman, S. S., N. M. Ashwish, and M. E. Ali, "Appraisal of the Pre-Emptive Effect of Lactoferrin Against Chromium-Induced Testicular Toxicity in Male Rats.", Biological trace element research, vol. 201, issue 11, pp. 5321-5334, 2023. Abstract

Lactoferrin (LCF), a potent naturally occurring antioxidant, is a crucial component in preventing potassium dichromate (PDC) toxicity. The goal of the current work was to study the potential efficacy of LCF in preventing PDC(CrVI)-induced testicular toxicity and oxidative injury in rats. Six groups of male rats of Wistar stain were randomly categorized into: group 1, which served as the control; group 2 and 3 received LCF (200 and 300 mg/kg orally, respectively); group 4 received PDC (2 mg/kg i.p.); group 5 and 6 pretreated with LCF, followed by PDC as in group 4 with 90 min apart for 28 days. PDC-intoxicated rats showed a significantly altered spermogram with abnormal sperm morphology. PDC significantly upregulated serum FSH and downregulated testosterone levels. Additionally, PDC decreased the levels of testicular key antioxidant biomarkers (catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH)) with elevated lipid peroxidation marker (TBARS) and testicular chromium content. Moreover, it upregulated testicular proinflammatory cytokines, IL-1, IL-6, IL-10, and TNF-α, induced histopathological changes in testes with significant immunohistochemical expression of FasL and moderate expression of Nrf2. Pretreatment with LCF significantly mitigated PDC-induced testicular toxicity by enhancing spermogram, improving hormonal levels, restoring testicular oxidant/antioxidant balance, and decreasing testicular IL-1, IL6, IL-10, and TNFα levels, and amending both FasL and Nrf2 immunohistochemical-expression. Additionally, LCF improved testicular histopathological picture and spermatogenesis. Our results highlight the importance of LCF as a superior protective modulator of PDC-induced testicular injury.

Zewail, M., P. M E Gaafar, N. A. H. A. Youssef, M. E. Ali, M. F. Ragab, M. F. Kamal, M. H. Noureldin, and H. Abbas, "Novel Bilosomes for Combating UVB Induced Skin Damage.", Pharmaceuticals (Basel, Switzerland), vol. 16, issue 1, 2023. Abstract

The recent interest in bioactive compounds from natural sources has led to the evolution of the skin care industry. Efforts to develop biologically active ingredients from natural sources have resulted in the emergence of enhanced skin care products. Spirulina (SPR), a nutritionally enriched cyanobacteria-type microalga, is rich in nutrients and phytochemicals. SPR possesses antioxidant, immunomodulatory, and anti-inflammatory activities. Spirulina-loaded bilosomes (SPR-BS), a novel antiaging drug delivery system, were designed for the first time by incorporation in a lecithin−bile salt-integrated system for bypassing skin delivery obstacles. The optimized BS had good entrapment efficiency, small particle size, optimal zeta potential, and sustained drug release pattern. Blank and SPR-loaded BS formulations were safe, with a primary irritancy index of <2 based on the Draize test. In vivo tests were conducted, and photoprotective antiaging effects were evaluated visually and biochemically by analyzing antioxidant, anti-inflammatory, and anti-wrinkling markers following ultraviolet (UV) B irradiation. Results of biochemical marker analysis and histopathological examination confirmed the superior antiaging effect of SPR-BS compared with SPR. Thus, SPR-loaded BS is a promising nanoplatform for SPR delivery, can be used for treating UV-induced skin damage, and offers maximum therapeutic outcomes.

Mohamed, M. Z., M. F. Abed El Baky, M. E. Ali, and H. M. Hafez, "Aprepitant exerts anti-fibrotic effect via inhibition of TGF-β/Smad3 pathway in bleomycin-induced pulmonary fibrosis in rats.", Environmental toxicology and pharmacology, vol. 95, pp. 103940, 2022. Abstract

Bleomycin is a well-recognized antineoplastic drug. However, pulmonary fibrosis (PF) is considered to be the principal drawback that greatly limits its use. Here, we sought to investigate ability of the neurokinin receptor 1 blocker, aprepitant, to prevent PF caused by bleomycin. Male adult Wistar rat groups were given a single intratracheal injection of bleomycin, either alone or in combination with aprepitant therapy for 3 or 14 days. Collagen deposition and a rise in transforming growth factor beta (TGF-β) immunoreactivity in lung tissue serve as evidence of bleomycin-induced PF. The serum levels of lactate dehydrogenase, alkaline phosphatase, and total antioxidant improved after aprepitant therapy.Additionally, it reduced the protein expressions of interferon alpha, tumor necrosis factor alpha, and lung lipid peroxidation. Moreover, aprepitant treatment led to an increase in the antioxidant indices glutathione, glutathione peroxidase, and catalase. Aprepitant is postulated to protect against bleomycin-induced PF by decreasing TGF-β, phosphorylating Smad3, and increasing interleukin 37, an anti-fibrotic cytokine, and G Protein-coupled Receptor Kinase 2. Aprepitant for 14 days considerably exceeded aprepitant for 3 days in terms of improving lung damage and having an anti-fibrotic impact. In conclusion, aprepitant treatment for 14 days may be used as an adjuvant to bleomycin therapy to prevent PF, mostly through inhibiting the TGF-/p-Smad3 fibrotic pathway.

El Sheikh, M. A., Y. A. El-Feky, M. M. Al-Sawahli, M. E. Ali, A. M. Fayez, and H. Abbas, "A Brain-Targeted Approach to Ameliorate Memory Disorders in a Sporadic Alzheimer's Disease Mouse Model via Intranasal Luteolin-Loaded Nanobilosomes.", Pharmaceutics, vol. 14, issue 3, 2022. Abstract

Impaired memory and cognitive function are the main features of Alzheimer's disease (AD). Unfortunately, currently available treatments cannot cure or delay AD progression. Moreover, the blood-brain barrier hampers effective delivery of treatment to the brain. Therefore, we aimed to evaluate the impact of intranasally delivered luteolin on AD using bile-salt-based nano-vesicles (bilosomes). Different bilosomes were prepared using 2-factorial design. The variables were defined by the concentration of surfactant, the molar ratio of cholesterol:phospholipid, and the concentration of bile salt. Results demonstrated optimized luteolin-loaded bilosomes with particle size (153.2 ± 0.98 nm), zeta potential (-42.8 ± 0.24 mV), entrapment efficiency% (70.4 ± 0.77%), and % drug released after 8 h (80.0 ± 1.10%). In vivo experiments were conducted on an AD mouse model via intracerebroventricular injection of 3 mg/kg streptozotocin. We conducted behavioral, biochemical marker, histological, and immune histochemistry assays after administering a luteolin suspension or luteolin bilosomes (50 mg/kg) intranasally for 21 consecutive days. Luteolin bilosomes improved short-term and long-term spatial memory. They also exhibited antioxidant properties and reduced levels of proinflammatory mediators. They also suppressed both amyloid β aggregation and hyperphosphorylated Tau protein levels in the hippocampus. In conclusion, luteolin bilosomes are an effective, safe, and non-invasive approach with superior cognitive function capabilities compared to luteolin suspension.