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ABSTRACT: Bathymetry is required for coastal zone management; hence, it is important to be evaluated properly. Also, 

bathymetry is highly dynamic in nearshore zone, so, it needs continuous monitoring. The conventional method for 

bathymetry retrieval is based on sounding that requires intensive time, cost and calm sea conditions. Recently, remote 

sensing is commonly used to map the shallow water bathymetry since it is frequently captured. Adding up, satellite images 

may be attained freely with quietly high resolution like Landsat images; 30 m spatial resolution.  Consequently, there is 

intensive research directed to correlate the reflectance/radiance to the water depths. Variable models either linear or 

nonlinear were developed while in this research, a nonlinear technique, Genetic Algorithm (GA), is introduced. GA was 

applied on data from multispectral Landsat images. Landsat images were geo-referenced, radiometrically calibrated and 

atmospherically corrected to attain the reflectance of different bands. GA was utilized to derive the bathymetry for a 

coastal stretch along the Egyptian Northern Coast (NC). Several trials have been investigated using a reflectance of a 

single band and a combination of bands, i.e., blue, green and red bands of Landsat 8. Bathymetry measurements at the 

study site have been used to calibrate the different models/trials. 70% of the data has been assigned to the training of 

models and the rest has been utilized in the testing process. Comparison of linear model, ratio transform model and GA 

has been performed. GA showed a comparable performance for estimating shallow water depths; R-squared= 0.95 and 

RMSE=0.59 m; while enhancements of the derived bathymetry can be achieved by clustering water depths with different 

assigned GA equations.  
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INTRODUCTION 

 

The seas cover about 70% of the earth's surface; they 

constitute a valuable resource supporting the economy for 

most of nations. Therefore, a proper management of 

coastal zone is crucial. Either monitoring of coastal 

ecosystem or planning and design of projects in the 

nearshore zone needs information about sea bottom 

topography. 

Bathymetric data is an essential requirement in coastal 

environment for different reasons. Since it may be used 

for navigation purpose, monitoring the temporal 

morphological changes and for coastal zone management. 

Moreover, bathymetry is a basic input for numerical 

modeling. 

The conventional technique for bathymetric data 

retrieval is via sounding either using single or multi beam. 

The advantages, for deep waters it provides high vertical 

accuracy measures. In addition, the single beam echo 

sounder represents a feasible alternative for producing sea 

bottom maps at lower cost. However, echo-sounding is 

quite expensive, time consuming and require intensive 

labor and suitable sea conditions. Also, sometimes 

shallow water, rocky areas or regions of coral reefs cannot 

be accessible. The economic designations lower the 

ability for bathymetric data update and the frequent 

monitoring process of coastal zone. 
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Recently, remote sensing is commonly used to map the 

water bathymetry. The wave lengths of emitted light 

penetrate water with varying degree. The light is 

attenuated exponentially with water depth. Hence, the 

shallower and clear water provide a good seabed 

reflectance with limited amount of light absorption. 

Several attempts have been introduced for bathymetry 

estimation from remote sensing. Each algorithm proposed 

to correlate the remotely sensed seabed reflectance with 

the real water depths measured at particular locations.  

     The most popular approach is the linear model of 

(Lyzenga 1981), (Lyzenga 1985). The main assumption is 

that the sea bed reflectance is exponentially related to 

water depth. Two bands or more may be used to formulate 

the reflectance/depth relationship by multivariate linear 

regression. Another widely used algorithm is provided by 

(JUPP 1988). The methodology has three consecutive 

steps: defining Depth of Penetration (DOP) zones, 

interpolation of depths within each zone and calibration 

of depths within these zones. Alternatively, (Stumpf et al. 

2003) proposed the ratio transform model for estimating 

water depths with fewer calibration parameters. 

Currently, more research is directed to improve the 

accuracy of the satellite derived bathymetry (SDB) 

especially by the freely available data set of Landsat. 

The modifications concentrated on proposing machine 

learning and artificial intelligence techniques for 
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bathymetry retrieval. (Gholamalifard et al. 2013) applied 

three Machine Learning (ML) techniques: Single Band 

Algorithm (SBA), Principal Component Analysis (PCA), 

and Multi-Layer Perceptron (MLP) neural network in the 

Southern Caspian Sea, Iran. The best performance is 

regarded to neural network, SBA provided a medium 

accuracy and PCA failed to present an acceptable 

correlation. 

(Liu et al. 2017) used two bathymetric data set to test 

several types of artificial neural network models, 

multilayer perceptron (MLP) and general regression 

neural network (GRNN) as a predictor of bathymetric data 

from IKONOS and Landsat moderate imageries. Both 

neural network models achieved superior accuracy 

compared to other prediction models such as inversion 

model and regression tree. The MLP was quite 

satisfactory in performance more than GRNN.  

(Mohamed et al. 2017) assessed the performance of 

various bathymetry retrieval models by application to a 

low turbidity deep water area, a highly turbid unstable 

area and a coral reef area. These models are the ensemble 

regression tree fitting using Bagging (BAG), ensemble 

regression tree fitting with Least Squares Boosting (LSB) 

and Support Vector Regression (SVR). The best results 

were attained by BAG regression compared with the 

conventional algorithms. (Misra et al. 2018) investigated 

the validity of a nonlinear machine learning approach 

called Support Vector Machine (SVM) to compose the 

shallow water bathymetry data. Comparison of SVM with 

other linear models evidenced that it is better perform. 

(Makboul et al. 2018) assumed a nonlinear 3rd order 

polynomial relationship between each individual band 

logarithm and actual water depth. The green band of 

Landsat 8 revealed a comparable estimation of 

bathymetric data. (Shen et al. 2018) attempted to perform  

 

some improvement to Lyzenga’s model by developing 

generalized additive models. The enhanced models 

account for the nonlinear behavior between water depths 

and band reflectance’s of multispectral imagery data. 

Based on the previous research, remote sensing can be 

considered as an efficient alternative to hydrographic 

survey using different algorithm. 

The present research targets retrieval of SDB for 

nearshore regions using genetic algorithm (GA). GA is an 

optimization technique that adapt optimal solutions of 

nonlinear, nonconvex and multimodal problems, (Gobeyn 

et al. 2017). The concept of GA is based on both 

biological evolution and natural genetics. The algorithm 

helps in combining the involved variables in a defined 

problem with boundary conditions to develop an objective 

function. This function can be evaluated by calculating its 

fitness using a relevant chosen statistic. The proposed GA 

here has been applied to a certain site of the Northern 

Coast (NC) of Egypt using Landsat 8 Operational Land 

Imager (OLI) data. The aim was to attain the most 

representative objective function that can be used for 

bathymetry mapping and asses its performance. So, GA 

tested the ability of two or more bands combination in 

order to formulate a calibrated bathymetry. To assess the 

performance of GA, a comparison was considered with 

the linear transform model and the ratio transform 

algorithm.  

The research aims to find an alternating efficient, rapid 

and cheap method for driving bathymetry maps with high 

temporal resolutions. Such technique may be used 

effectively in coastal zone management and support the 

decision makers. Especially in case of sensitive areas 

exposed to short term/rapid morphology changes. 

 

 

STUDY AREA 

 

As shown in Fig. 1, the studied coastal stretch is 

located at the Northern Coast (NC), Egypt. It extends 17 

Fig. 1 Study area location and field measurements 
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km along-shore, starting from Badr village in the West 

(29°10′15″E 30°49′36″N) to Marabella resort in the East 

(29°20′11″E 30°52′38″N). 

The maximum wave height is close to 5 m and about 

40% of approaching waves do not exceed 0.5 m. The 

highest waves come from the NNW and WNW directions. 

This area is exposed to a limited portion of waves from N 

to ENE sector. The water level fluctuation is not small 

while the tidal range is less than 0.5 m. The water is 

extremely clear at this region and no coral reefs 

formation. There is a slight increase in turbidity and that 

backs to the flat beach conditions and sea grass existence.  

 

 

METHODOLOGY 

 

The methodology of bathymetry deriving is expanded 

in four main partitions; data collection, satellite image 

processing, bathymetry estimation and the statistical 

analysis. Data collection includes field data of water 

depths and the available Land Sat images. The Landsat 

data is corrected through the image processing stage. 

Bathymetry estimation involves the application of various 

algorithms to the study area. Each algorithm is evaluated 

separately and then compared with the others using some 

descriptive statistics in a statistical analysis stage. 

 

(1) Data Collection 

-  Field data 

Bathymetry estimation is based on calibrating the 

available remotely sensed data using real water depths. 

Commonly, a group of scattered points through of the area 

of concern with known depth are used. The source of 

calibration data may differ as the availability and 

consequently, the accuracy will be affected. Nautical 

charts, hydrographic charts, (Jagalingam et al. 2015), 

Light Detection and Ranging (LiDAR) data, (Pacheco et 

al. 2014) or survey data may be an option.  

In current study, field measurements using single 

beam echo-sounder during the day of 25 December 2017 

were acquired. The survey is extended 1.3 km cross shore 

and covers an approximate area of 22 km2. The echo-

sounder observations gathered depths of 2588 points 

spaced roughly 25 m. The collected water depths are 

varying from 0.7 m to 11.8 m.  

 

-  Remote sensing data 

The digital images provided by Landsat were 

commonly used to derive shallow water bathymetry. The 

Landsat    was established by the U.S.  Geological Survey 

(USGS) to routinely gather land imagery   from   space. 

Eight satellites were launched to remotely collect the data 

around the Earth. The Landsat 8 satellite orbited at 705 

kilometers, and carries Operational Land Imager (OLI) 

and Thermal Infrared Sensor (TIRS). OLI and TIRS 

images consist of nine spectral bands with a spatial 

resolution of 30 meters for Bands 1 to 7 and 9. The ultra- 

blue Band 1 is useful for coastal and aerosol studies. Band 

9 is useful for cirrus cloud detection. The resolution for 

Band 8 (panchromatic) is 15 meters. Thermal bands 10 

and 11 are useful in providing more accurate surface 

temperatures and are collected at 100 meters. The 

approximate scene size is 170 km north-south by 183 km 

east-west (106 mi by 114 mi). A satellite image from 

Landsat 8 OLI data sets was used in this study. The image 

was captured at date 25 June 2017. It was chosen based 

on the full coverage of proposed site, the temporal 

proximity to the survey dates and the minimum cloud 

cover. 

 

(2) Image Processing 

The processing of satellite images is a preliminary step 

before execution any analysis of data. The objective is to 

eliminate the atmospheric effects, unwanted path 

radiance, unnecessary sea surface reflectance as well as 

any distortion of the image. Generally, the processing 

scheme is divided in to three major parts; image 

rectification, radiometric calibration, atmospheric 

correction.  

Regarding image rectification, the Landsat images 

were firstly geo-referenced using a sufficient number of 

ground control points referred to WGS84 datum and UTM 

zone 35. Radiometric calibration is essential to convert 

the raw image Digital Numbers (DNs) to spectral radiance 

and then to Top of Atmosphere (TOA) reflectance.  

Moreover, the radiation recorded at satellite sensor maybe 

influenced by a range of effects when it passes through 

the atmosphere. Atmospheric properties such as aerosols, 

suspended sediment particles of dust, water vapor and 

water droplets may alter the transmittance. Hence, 

atmospheric correction becomes an imperative step before 

application of any algorithm. 

In this study, all the processing steps are carried out 

using ENVI 5.1 software. The ENVI Radiometric 

Calibration tool is used for converting the DN values to 

radiance and TOA reflectance based on the information 

available in the MTL file associated with the downloaded 

data. The Fast Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes (FLAASH) module of ENVI is used 

to eliminate the atmospheric errors in the satellite images. 

The FLAASH algorithm derives its physics-based 

mathematics from Moderate Resolution Atmospheric 

Transmission (MODTRAN4) that corrects wavelengths 

in the visible through near-infrared (NIR) and shortwave 

infrared regions (SWIR), up to 3 µm. The input image for 

FLAASH is a radiometrically calibrated radiance image 

in band interleaved-by-line (BIL) format. The module 

further takes into consideration the date of acquisition, 

time as well as the sensor altitude for further correction of 

the image. The tool uses a dark pixel reflectance ratio 

method, (Kaufman et al. 1997), to retrieve the aerosol 

amount and estimate the average scene visibility. One of 

the standard MODTRAN models is chosen according to 

the expected surface temperature of the RS scene. 

After the images are atmospherically corrected, they 

are rescaled to reflectance values ranging from 0 to 1 

using the band math tool in ENVI. 
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(3) Bathymetry Estimation 

This section presents two of the widely used models 

for bathymetry extraction in addition to the proposed GA. 

As several bands data exist, and each model is 

demonstrated by two or three bands; it is important to 

investigate which bands will be useful for bathymetric 

data retrieval. Conceptually, the selection of the best 

spectral bands for analysis is mainly governed by the 

penetrating capability as well as the aquatic environment 

under consideration. In general, short wavelength bands 

such as blue and green are generally preferred for 

bathymetry developing due to their strong penetration 

proficiency. 

- Linear transform algorithm 

(Lyzenga 1981), (Lyzenga 1985) suggested that the 

errors resulting from different bottom types could be 

corrected by using two bands provided that the ratio of the 

bottom reflectance between the two bands for all bottom 

types is constant over the scene. The model by (Lyzenga 

1985) is formulated as follows: 

 

 𝑍 = 𝑎ₒ + 𝑎𝑖𝑋𝑖 + 𝑎𝑗𝑋𝑗                                                       (1) 

                    

where, 

𝑋𝑖 = 𝐿𝑛(𝑅𝑤,𝑖 − 𝑅𝑑𝑝,𝑖)                                                     (2) 

𝑋𝑗 = 𝐿𝑛(𝑅𝑤,𝑗 − 𝑅𝑑𝑝,𝑗)                                                       (3) 

𝑎ₒ, 𝑎𝑖 and 𝑎𝑗 = coefficients determined through multiple 

regression using known depths and the corresponding 

reflectance. 

𝑅𝑤,𝑖 and 𝑅𝑤,𝑗 = Observed reflectance in bands i and j. 

𝑅𝑑𝑝,𝑖 and 𝑅𝑑𝑝,𝑗 = Reflectance of dark water pixel in bands 

i and j. 

If imagery has already been atmospherically corrected 

then, 𝑋𝑖 = Ln (𝑅𝑎𝑐,𝑖) and 𝑋𝑗 = Ln (𝑅𝑎𝑐,𝑗). As 𝑅𝑎𝑐,𝑖 and 

𝑅𝑎𝑐,𝑗 are the corrected reflectances, (Green et al. 2000). 

This model is not restricted to only two bands. 

(Pacheco et al. 2014) utilized the three bands of coastal 

aerosol, blue and green in bathymetry estimation. 

- Ratio transform algorithm 

(Stumpf et al. 2003) presented the ratio transform 

model for shallow water bathymetry retrieval. This model 

basically depends on the concept that light attenuates 

exponentially with depth and suggests that the effects of 

substrate albedo are minimized using two bands to derive 

depths. The model structure is expressed as follows: 

 

𝑍 = 𝑚1

𝐿𝑛(𝑛𝑅𝑤,𝑖)

𝐿𝑛(𝑛𝑅𝑤,𝑗)
− 𝑚0                                                    (4) 

 

where, 

Z is the water depth. 

m1 is a tunable constant to scale the ratio to depth. 

m0 is the depth offset. 

𝑅𝑤,𝑖 and 𝑅𝑤,𝑗 are the reflectance of bands i and j. 

n is a fixed constant for all areas. 

 

The value of n is chosen to assure that both the 

logarithms will be positive under any condition and that 

the ratio will produce a linear response with depth. 

Generally, the reflectances of blue and green bands are 

used to express the model ratio. 

- Genetic algorithm 

The steps of the proposed GA were summarized as 

follows: 

1. Randomly generate an initial population of 

equations. The population size (N) is a user defined 

number input (N = 10000 in this study). It is adopted so 

that enhance the ability of obtaining good results and 

avoid time consuming in computations. The demonstrated 

methodology to build the chromosome of each individual 

in population was by composing a random structured 

string from bands as variables and other additional 

parameters. 

 

Z = (F1. 𝑅𝑤,𝑖). (F2. 𝑅𝑤,𝑗). (F3. 𝑅𝑤,𝑘) ± Const                (5) 

 

where, 

Z is the predicted water depth. 

(𝑅𝑤,𝑖, 𝑅𝑤,𝑗, and 𝑅𝑤,𝑘) are the scaled band reflectances. 

(F1, F2, and F3) are factors computed by GA. 

Dot stands for an operator (+, -, /, *, log, sin, exp …etc.). 

Const is addition or subtraction part adapted by GA.  

2. Evaluate each element in population by calculating 

its fitness by such a relevant statistic. The fitness function 

used in this study is the Root Mean Square Error (RMSE). 

The calculation of RMSE is implemented using bands 

reflectance of Landsat multispectral data and the collected 

field measurements of water depths. 

3. The 50% of the population with highest score of 

fitness are arranged in pairs and selected for reproducing 

the new generation. Equations with higher fitness values 

have higher probability to be chosen as first generation 

parents. Each pair of parents will produce two off-springs 

to initiate a new generation. Firstly, off-springs are 

identical to parents. Then, off-springs are exposed to two 

different processes called cross over and mutation. 

4. Cross over will be applied through the generated 

off-springs by replacing two variables from (𝑅𝑤,𝑖 , 𝑅𝑤,𝑗, or 

𝑅𝑤,𝑘) randomly between each couple of parents. 

5. a limited portion of off-springs are exposed to 

mutation according to an assigned uniform probability. 

The scheme is executed by randomly replacing a single 

operator, factor or constant in an off-spring equation. 

6. This algorithm will be repeated till a fixed number 

of iterations is maintained or a required fitness criterion is 

met.  

 
(4) Analysis of Results 

In order to evaluate the accuracy of the used model, 

some descriptive statistical parameters are used. The 

parameters are defined as follows: 

 

𝐵𝑖𝑎𝑠 (𝑍𝑝, 𝑍𝑚) = 𝑀𝑒𝑎𝑛(𝑍𝑝) − 𝑀𝑒𝑎𝑛(𝑍𝑚)                       (6) 
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𝑅𝑀𝑆𝐸(𝑍𝑝, 𝑍𝑚) = √∑ (𝑍𝑝 − 𝑍𝑚)2𝑁
1 /𝑁                            (7) 

𝑀𝐴𝐸(𝑍𝑝, 𝑍𝑚) =
1

𝑁
 ∑ |𝑍𝑝 − 𝑍𝑚|𝑁

𝐼                                      (8) 

𝑅2 = [ ∑ (𝑍𝑚 − 𝑍𝑝)2𝑁
1 / ∑ (𝑍𝑚 − 𝑀𝑒𝑎𝑛(𝑍𝑚))2 𝑁

1 ]       (9) 

where, 

𝑍𝑝 is the predicted depth from satellite imagery. 

𝑍𝑚 is the measured depth in field. 

N is the number of field measurements. 

 

 

CASE STUDY 

 

Field measurements were divided into training data 

and testing data. Both training and testing terms are 

important in such methodology. Training is a basically 

expresses the model calibration and commonly utilized in 

machine learning techniques. However, in the testing 

phase a percentage of data set test the model validity and 

accuracy. In the present study, about 70% of the collected 

data points are used as training for depth retrieval 

algorithms and the rest are assigned for testing/ validation. 

   

(1) Linear Transform Model 

The depth calculation for this model can be performed 

using two or more bands. To select the best bands to 

contribute, the correlation between every band scaled 

reflectances and the corresponding measured depths were 

investigated separately. As we have Landsat 8 OLI, the 

commonly used bands in bathymetry estimation are; 

coastal blue (B1), blue (B2), green (B3) and the red band 

(B4) due to their shorter wave lengths. The estimated R-

squared values for B1, B2, B3 and B4 were found as 0.79, 

0.81, 0.87 and 0.49 respectively. 

Hence, the most significant band is the green and the 

red band can be assumed less effective than the others. 

Furthermore, all of the first three bands evidenced that 

there is a good relationship with the real depths. So, here, 

two trials were examined for bathymetry estimation using 

B1, B2 and B3. A trial was implemented using two bands 

(B2 & B3) and another one utilized three bands (B1 & B2 

& B3). The forms of the two resulting equations were 

found as: 

 

𝑍 = 1.89 + 6.98 𝐿𝑛(𝑅2) − 10.82 𝐿𝑛(𝑅3)                   (10) 

 

𝑍 = 0.79 + 5.72 𝐿𝑛(𝑅1) + 1.88 𝐿𝑛(𝑅2) −
10.63 𝐿𝑛(𝑅3)                                                               (11) 

 

Finally, the two linear models were assessed and 

compared with each other to propose the best performed 

relation. 

 

(2) Ratio Transform Method 

 

     In this model, the scaled reflectances of blue and green 

bands (B2 & B3) are used as common for bathymetry 

estimation. A simple linear regression is carried out using 

measured depths and the ratio of reflectance’s logarithms 

to calculate the model parameters (m0, m1). The factor n 

is adopted to achieve the best correlation (n=35) and the 

equation is finally deformed as follows:  

 

𝑍 = 21.37 ∗
𝐿𝑛(35 ∗ 𝑅2)

𝐿𝑛(35 ∗ 𝑅3)
− 18.51                                (12) 

 

(3) Genetic Algorithm 

 

Based on the correlation of bands to the actual depths, 

the bands B1, B2 and B3 were employed to compose an 

alternative nonlinear equation to either ratio transform 

model or linear model. In GA, a population of equations 

were initially formulated in random way and then 

evaluated by RMSE as an objective function. After a 

frequent application of the two consecutive processes; 

cross over and mutations; the RMSE was optimized to 

minimum. Finally, the algorithm suggested the best 

performing equation as: 

 

𝑍 =  
(4.99 ∗ 𝑅1)

√(2.67 ∗ 𝑅2) ∗ 𝑆𝐼𝑁(1.53 ∗ 𝑅3)
− 0.31             (13) 

 

RESULTS AND DISSCUSION 

 

The testing data correlation were displayed for each 

algorithm as in fig. 2. All models achieved high values of 

R-squared values; 0.95 (ratio transform) and 0.94 (the 

others). In shallower depths, GA predictions 

overestimated the water depth and in contrary the linear 

model produced an underestimation of results while the 

ratio transform was more compensated. For other regions, 

GA and ratio transform model results are more 

concentrated about the best fit linear trend. However, the  

predicted depths of linear model were significantly 

deviated; they have the lowest RMSE even though the R-

squared score was roughly similar to the other models. 

As shown in table 2, regarding RMSE and MAE, the  

ratio transform model was the best by retrieving the 

lowest estimate. Either linear models or GA also provided 

a good accuracy with insignificant variability to the ratio 

transform. The bias of means between measured and 

predicted depths was observed as negligible for all 

algorithms. During transitions between training and 

testing phases, the linear model resulted in a higher 

difference in RMSE and MAE, nevertheless, GA and ratio  

transform model were more consistent. 

Phase 
No. of 

points 

Min. 

depth 

(m) 

Max. 

depth 

(m) 

Avg. 

depth 

(m) 

Training 1857 0.71 11.70 7.93 

Testing 731 0.70 11.94 8.05 

Table 1 Statistics of field data for training and testing  



 

B. Gabr, et al. 

 

 

 

 

 

 

The depths were gathered into four classes to partially 

calculate RMSE and evaluate the performance of each 

model in all the different zones. As in fig. 3, for depths 

from 0 to 3m, GA maintained the higher RMSE value 

(1.30 m) followed by the ratio transform (0.86 m) and the 

linear model was the best performed (0.63 m). But 

generally, in all the remaining depth clusters, the linear 

model was not better than the other two models. 

 

 

 

 

 

 

 

 

For more visualization of results, the reflectance of each 

model outcome on morphology may be alternatively an 

appropriate tool for each model assessment. Two profiles 

as shown in the plan with the actual bathymetry, fig. 4, 

were selected at two separate locations within the testing 

data. As in fig. 5, for this particular case, GA profiles were 

found luckily coincided with the measured ones. While 

the linear model profiles had a magnificent variation and 

the ratio transform profiles were a medium case. 

 

Method 

R-Squared RMSE (m) MAE (m) Bias (m) 

Training Testing Training Testing Training Testing Training Testing 

Ratio transform  0.95 0.96 0.54 0.54 0.41 0.44 3.914E-05 4.07E-04 

Linear (Two bands) 0.94 0.93 0.61 0.70 0.37 0.57 6.679E-10 6.43E-02 

Linear (Three bands) 0.94 0.93 0.60 0.68 0.36 0.55 7.717E-10 6.21E-02 

Genetic Algorithm  0.94 0.95 0.59 0.59 0.44 0.48 3.083E-05 3.35E-02 

Table 2 Comparison of SDB models results by statistical analysis for training and testing data  

Fig. 2 Correlation between observed and predicted depths for testing data (a) linear model; (b) ratio transform 

model; (c) GA  

Fig. 3 The variation of RMSE with the different water depth clusters 
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CONCLUSION 

 

This paper involved an application of GA to develop 

a bathymetry by using multispectral Landsat-8 satellite 

data. The GA performance was assessed by an integrated 

comparison with the widely used methods such as linear  

and ratio transform models. The statistical analysis 

showed a comparable potentiality to the GA, i.e. 

RMSE=0.68, 0.54 and 0.59 for linear, ratio transform and 

GA respectively. Although, GA conducted a relatively 

high RMSE in the shallower depths close to the shoreline, 

Fig. 4 Location of the two selected profiles on the actual bathymetric map 

Fig. 5 Comparison of beach profiles of SDB models with the field measurements(a) profile 1 from linear 

model; (b) profile 1 from ratio transform model; (c) profile 1 from GA; (d) profile 2 from linear model; 

(e) profile 2 from ratio transform model; (f) profile 2 from GA 

 

(a) 

(b) 

(c) (f) 

(e) 

(d) 
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the overall accuracy was satisfactory. Moreover, a better 

enhancement for GA may be attained by clustering depths 

and deriving a group of nonlinear equations instead of 

one. The availability of Landsat data and the SDB 

algorithms is beneficial for monitoring the temporal 

morphology changes along the coast. 
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