Types of Simulation Models

System model

deterministic stochastic
static dynamic static dynamic
Monte Carlo
simulation
continuous | |discrete continuous | | discrete
Continuous  Dijscrete-event Continuous  Dijscrete-event
Simulation simulation simulation simulation



What is Monte Carlo
Simulation ?

Monte Carlo methods are a widely used class of
computational algorithms for simulating the
behavior of various physical and mathematical
systems, and for other computations.

Monte Carlo algorithm is often used to find solutions
to mathematical numerical problems (which may
have many variables) that cannot easily be solved,
(e.g. integral calculus, or other numerical methods)

Determine some value using random numbers that
could be very difficult to do by other means

Ex: Evaluating an integral that has no closed
analytical form



Monte Carlo Simulation

« Before any formal definitions, let's consider a
simple example
— Let's assume we don't know the formula for the

area of a circle, but we do know the formula for
the area of a square

— We'd like to somehow find the area of a circle of a
given radius (let's say 1)



Monte Carlo Simulation

— Let's generate a (Big) number of random
points in the square

« Test to see if each point is also in the circle

— Since we know the circle has a radius of 1, we can
put its center at the origin and any random point a
distance <= 1 from the origin is within the circle
» The ratio of points in the circle to total points
generated should approximate the ratio of the
area of circle to the area of the square



Monte Carlo Simulation

 “Informal” theory behind M.C.

« Consider a random experiment with possible
outcome C

* Run the experiment N times, counting the
number of C outcomes, N

* The relative frequency of occurrence of C is the

ratio No/N
« As N = o, N/N converges to the probability of
C, or N
p(C)=lim —&

N> N



Monte Carlo Simulation

* |[n Probability: we determines probability of an event
based on the number of ways it may occur out of the
total number of possible outcomes that gives the
"true” probability of a given event

 Whereas empirical probability only gives an estimate
(since we cannot actually have N be infinity)

« However, for complex situations this could be quite
difficult to do
— When axiomatic probability is not practical,
empirical probability (Monte Carlo simulation)
can often be a good substitute

« Can also be used to verify axiomatic results



M.C. in Integration

« Another common problem — evaluating
an integral
— Many integrals have no closed form and

can also be very difficult to evaluate with
"traditional” numerical methods

— How can we use Monte Carlo simulation to
evaluate these?

— Let's look at this in a somewhat simplified
way (i.e. we will be light on the theory)



Monte Carlo Simulation

* A scheme employing random numbers which is
used to solve certain stochastic or deterministic
problems where the passage of time plays no
substantive role.

« Common problem is the estimation offf(X)dx,
where fis a function, x is a vector and Q is
domain of integration.

b
 Special case: Estimate jf (x)dx for scalar x
and limits of integration a, b



Monte Carlo Simulation

Let X be a uniform random variable on the
interval [a, b] with density
p(x) =

b , a<x<b
—a

and let x,, ..., x, be a random sample from X.
Then

J £ = [29 poan

. P(x)

= (b-a)| f(x)p(x)dx

= (b—a)ELf(X)]
b—a

=2 ).

n.;




Monte Carlo Simulation

Example: Estimate job sin(x)dx .

We approximate this by
éZsin(xl.),
n i

where x., ..., x,, are a sample from a uniform [0,
b] random variable.
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Monte Carlo Simulation

Example: Estimate job sin(x)dx .

n=10 n =100 n=1000 | n=2000
b=1
(answer = 2) 1.753 2.032 1.994 1.999
b=2
(answer = 0) -0.898 -0.013 0.137 0.079

There is considerable variability in the
quality of solution; accuracy of numerical
integration sensitive to integrand and
domain of integration 1



Two Types of Approaches

* Direct
— Obtain an analytical expression

— Inverse transform
« Requires inverse of the distribution function

— Composition & Convolution
* For special forms of distribution functions

* Indirect
— Acceptance-rejection
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Acceptance-Rejection Method

By Von Neumann (1951), used when the direct
approaches fail or inefficient.

A closed form for F(X) does not exist, so what we'll
do is to add another distribution . For which we know
“how to calculate the CDF and its inverse”.

We pick a function t(x) that is larger than f(x) for all x.
Technically we say that t(x) majorizes f(x).



Acceptance-Rejection Method
« Specify a function that majorizes the density
t(x) 2 f(x),Vx

* t(x) is clearly not a density fun.

* New density function  r(x) = t%oo
t(x)dx

 Algorithm to generate a r.v. with density f(x)

1. Generate Y with density
2.Generate U independint of Y
3.IfUL f(Y)/t(Y), return X =7.
Otherwise go back to Step 1. 14



Example:

1(x)

=Y
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Example: More Efficient

t(x)

16



Ex. Beta Distribution

« Density (o (- x)“z_l

J(x) =+ B(al,az)

0 otherwise

O<x<l

Bla,,a,)= J.Ol N (=0 dt

 No closed form CDF. No closed form inverse

e Must use numerical methods for inverse-

transform method
17



Beta Distribution Shapes

Second parameter

B

(p=-5,9=3) (P=2,9=3) (p=3,9=3)
(p=1,9=2) (P=2,9=2) (p=3,9=2)
(P=1.9=1) (P=2,9=1)
(p=35.9=3) (p=2,94=5) (p=3,9=.5)
Beta Density shapes First Parameter
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Beta(4,3) Example
(6Ox3(1—x)2 0<x<l

0 otherwise

The distribution F(x) is a 6! degree polynomial,
The inverse approach is not a good one.
Try to find t(x)

put df/dx =0 to find the max of the f, which will
beax=0.6 ,andf(0.6)=2.0736

Put 2.0736 0<x<l
1(x) =1

Density £(x) =+

0 otherwise
t((x)  2.0736 1

[ 100 ) E2.0736dx .

.

Then r(x)=




Beta(4,3) Example

So r(x) is just U(0,1)

The algorithm:

1. Generate Y having density of r(x) ; i.e. U(0,1)
2. Generate U ~ U(0,1), independent of Y

3. If U< J; ((5)) , return X=Y; Otherwise go to step 1




Acceptance — Rejection
Technique for Gamma Dlst.

llllllllllllll

A gamma(a,[3) denS|ty

04
a _.o— 1 x/p 0.35 ~
px o

f(x) = () o<

(x)
/
=

0 otherwise

0.15
where 0.1 / N\
0.05

I'a) = jy“_le_ldy
0

A closed form for F(X)
does not exist,



Acceptance — Rejection

Technique for Gamma Dist.
A gamma(2,1)

We pick a function t(x) that
is larger than f(x) for all x.
t(x)=0.4

f(x)
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Acceptance-Rejection
Gamma(2,1)

If we selected t(x) = .4 0<=x<=10
Now t(x) is not a density function, why?
since its integral from 0 to 10 doesn’t add up to 1.

So let us define c:  And r(x) = t(x)/c:

% r(x):.4/4
CZJZ‘(X)CIIX -1
100 N
= [.4dx R(x)= [ 1dx'
0 0
= ‘1)0.4)( =.1x'

= l.e. r(x) is a density fn.



Acceptance — Rejection

The inverse transformation for R: X = 10Y.

For a random number Y = 0.3,
This translates into an X of 3

0.5

AcceptaI

ce-Rejection Example

t(x) = .4

0.45 -
0.4 -
0.35 1
0.3 -

X 0.25 1
0.2 -
0.15 1
0.1 -
0.05 1
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If we threw darts
that could land only
on the line x = 3,
then the probability
that a dart hitting
inside the
distribution would
be f(X=3)/t(X=3).



Acceptance — Rejection

f(X=.3)/t(X=.3)

15/.4
375

f(x)

0.5

0.45 -
0.4
0.35 A
0.3 A
0.25 -
0.2 A
0.15 A
0.1
0.05 -

AcceptaI

ce-Rejection Example

t(x) = .4

10

Generate U~U(0,1).

If U is less than .375,
we will accept X= 3
as coming from a
gamma(2,1)
distribution.

Otherwise, we will
start the process

over by selecting a
new R and new U.



Derived Distributions

 Several distributions are derived from
the gamma and normal

« Can take advantage of knowing how to
generate those two distributions
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