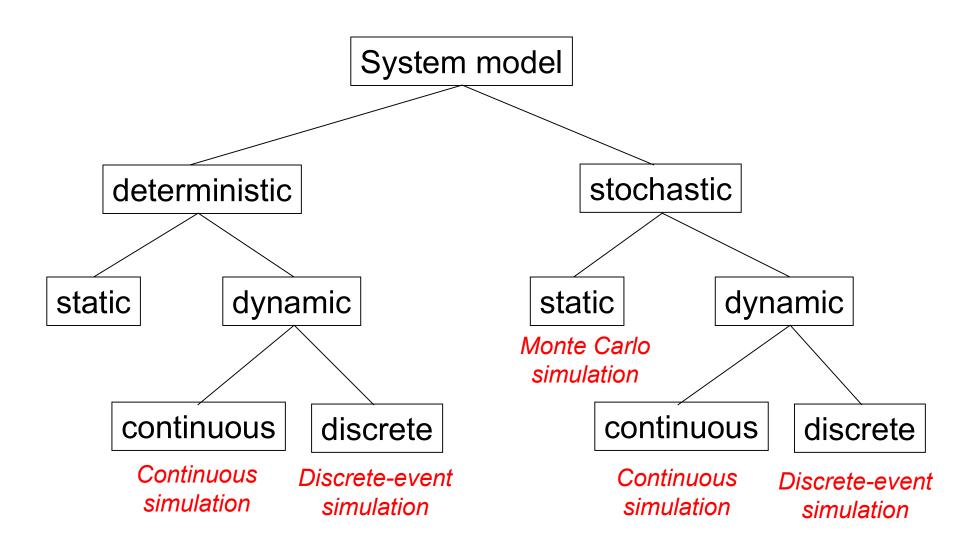
Types of Simulation Models



What is Monte Carlo Simulation?

- Monte Carlo methods are a widely used class of computational algorithms for simulating the behavior of various physical and mathematical systems, and for other computations.
- Monte Carlo algorithm is often used to find solutions to mathematical numerical problems (which may have many variables) that cannot easily be solved, (e.g. integral calculus, or other numerical methods)
- Determine some value using random numbers that could be very difficult to do by other means
- Ex: Evaluating an integral that has no closed analytical form

- Before any formal definitions, let's consider a simple example
 - Let's assume we don't know the formula for the area of a circle, but we do know the formula for the area of a square

 We'd like to somehow find the area of a circle of a given radius (let's say 1)

- Let's generate a (Big) number of random points in the square
 - Test to see if each point is also in the circle
 - Since we know the circle has a radius of 1, we can put its center at the origin and any random point a distance <= 1 from the origin is within the circle
 - The ratio of points in the circle to total points generated should approximate the ratio of the area of circle to the area of the square

- "Informal" theory behind M.C.
 - Consider a random experiment with possible outcome C
 - Run the experiment N times, counting the number of C outcomes, N_C
 - The relative frequency of occurrence of C is the ratio N_C/N
 - As N → ∞, N_C/N converges to the probability of C, or

$$p(C) = \lim_{N \to \infty} \frac{N_C}{N}$$

- In Probability: we determines probability of an event based on the number of ways it may occur out of the total number of possible outcomes that gives the "true" probability of a given event
- Whereas empirical probability only gives an estimate (since we cannot actually have N be infinity)
- However, for complex situations this could be quite difficult to do
- When axiomatic probability is not practical, empirical probability (Monte Carlo simulation) can often be a good substitute
 - Can also be used to verify axiomatic results

M.C. in Integration

- Another common problem evaluating an integral
 - Many integrals have no closed form and can also be very difficult to evaluate with "traditional" numerical methods
 - How can we use Monte Carlo simulation to evaluate these?
 - Let's look at this in a somewhat simplified way (i.e. we will be light on the theory)

- A scheme employing random numbers which is used to solve certain stochastic or deterministic problems where the passage of time plays no substantive role.
- Common problem is the estimation of $\int f(\mathbf{x})d\mathbf{x}$, where f is a function, \mathbf{x} is a vector and Ω is domain of integration.
- Special case: Estimate $\int_{a}^{b} f(x)dx$ for scalar x and limits of integration a, b

Let X be a uniform random variable on the interval [a, b] with density

$$p(x) = \frac{1}{b-a}, \quad a \le x \le b$$

and let $x_1, ..., x_n$ be a random sample from X.

Then

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \frac{f(x)}{p(x)} p(x)dx$$

$$= (b-a)\int_{a}^{b} f(x)p(x)dx$$

$$= (b-a)E[f(X)]$$

$$\approx \frac{b-a}{n} \sum_{i=1}^{n} f(x_{i}).$$

Example: Estimate $\int_0^b \sin(x) dx$.

We approximate this by

$$\frac{b}{n}\sum_{i=1}^n\sin(x_i)\,,$$

where $x_1, ..., x_n$ are a sample from a uniform [0, b] random variable.

Example: Estimate $\int_0^b \sin(x) dx$.

	n = 10	n = 100	<i>n</i> = 1000	n = 2000
b = 1				
(answer = 2)	1.753	2.032	1.994	1.999
b = 2				
(answer = 0)	-0.898	-0.013	0.137	0.079

There is considerable variability in the quality of solution; accuracy of numerical integration sensitive to integrand and domain of integration

Two Types of Approaches

- Direct
 - Obtain an analytical expression
 - Inverse transform
 - Requires inverse of the distribution function
 - Composition & Convolution
 - For special forms of distribution functions
- Indirect
 - Acceptance-rejection

Acceptance-Rejection Method

By Von Neumann (1951), used when the direct approaches fail or inefficient.

A closed form for F(X) does not exist, so what we'll do is to add another distribution. For which we know "how to calculate the CDF and its inverse".

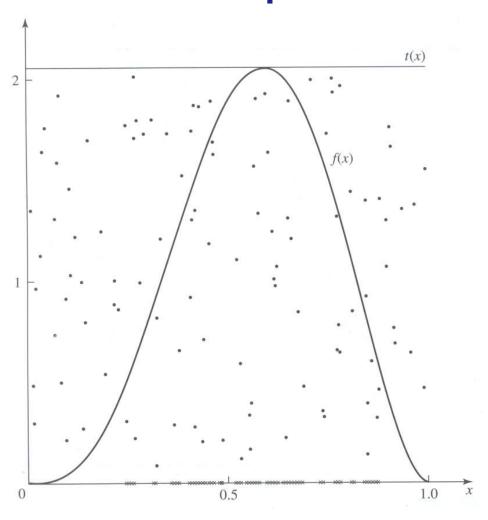
We pick a function t(x) that is larger than f(x) for all x. Technically we say that t(x) majorizes f(x).

Acceptance-Rejection Method

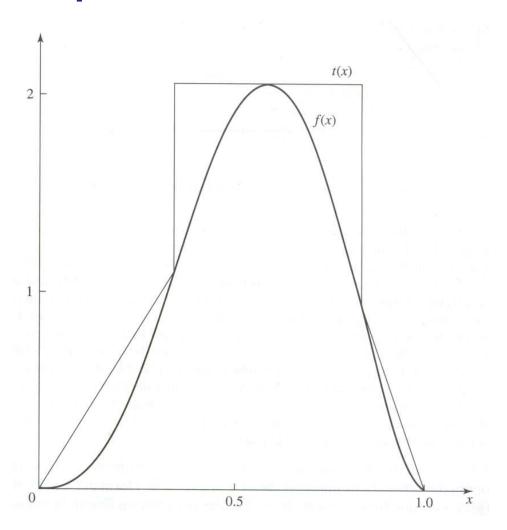
- Specify a function that majorizes the density $t(x) \ge f(x), \forall x$
- t(x) is clearly not a density fun.
- New density function $r(x) = \frac{t(x)}{\int_{-\infty}^{\infty} t(x) dx}$
- Algorithm to generate a r.v. with density f(x)
 - 1. Generate Y with density r
 - 2. Generate *U* independint of *Y*
 - 3. If $U \le f(Y)/t(Y)$, return X = Y.

Otherwise go back to Step 1.

Example:



Example: More Efficient



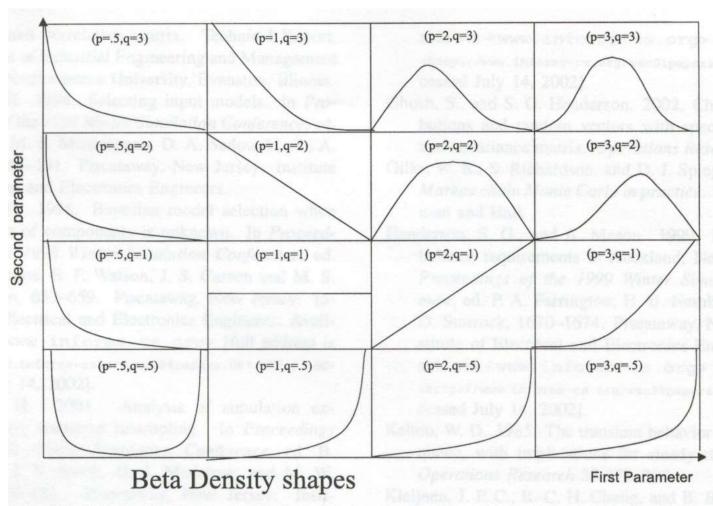
Ex. Beta Distribution

• Density $f(x) = \begin{cases} \frac{x^{\alpha_1 - 1} (1 - x)^{\alpha_2 - 1}}{B(\alpha_1, \alpha_2)} & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$

$$B(\alpha_1, \alpha_2) = \int_0^1 t^{z_1 - 1} (1 - t)^{z_2 - 1} dt$$

- No closed form CDF. No closed form inverse
- Must use numerical methods for inversetransform method

Beta Distribution Shapes



Beta(4,3) Example

• Density
$$f(x) = \begin{cases} 60x^3(1-x)^2 & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

- The distribution F(x) is a 6th degree polynomial, The inverse approach is not a good one.
- Try to find t(x)put df/dx =0 to find the max of the f, which will be a x = 0.6 , and f(0.6) = 2.0736

• Put
$$t(x) = \begin{cases} 2.0736 & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$
• Then
$$r(x) = \frac{t(x)}{\int_{-\infty}^{\infty} t(x) dx} = \frac{2.0736}{\int_{0}^{1} 2.0736 dx} = 1$$

Beta(4,3) Example

So r(x) is just U(0,1)

The algorithm:

- 1. Generate Y having density of r(x); i.e. U(0,1)
- 2. Generate $U \sim U(0,1)$, independent of Y
- 3. If $U \le \frac{f(Y)}{t(Y)}$, return X=Y; Otherwise go to step 1

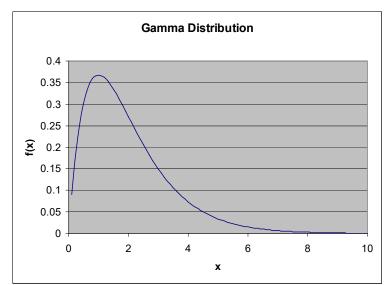
Acceptance – Rejection Technique for Gamma Dist.

A gamma(α,β) density

$$f(x) = \begin{cases} \frac{\beta^{-\alpha} x^{\alpha-1} e^{-x/\beta}}{\Gamma(\alpha)} & 0 < x \\ 0 & \text{otherwise} \end{cases}$$

where

$$\Gamma(\alpha) = \int_{0}^{\infty} y^{\alpha - 1} e^{-1} dy$$

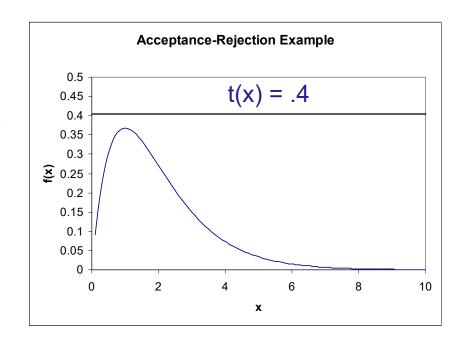


A closed form for F(X) does not exist,

Acceptance – Rejection Technique for Gamma Dist.

A gamma(2,1)

We pick a function t(x) that is larger than f(x) for all x. t(x)=0.4



Acceptance-Rejection Gamma(2,1)

If we selected t(x) = .4 $0 \le x \le 10$

$$0 \le x \le 10$$

Now t(x) is not a density function, why?

since its integral from 0 to 10 doesn't add up to 1.

So let us define c: And r(x) = t(x)/c:

$$c = \int_{0}^{\infty} t(x) dx$$

$$= \int_{0}^{10} .4 dx$$

$$= \int_{0}^{10} .4 x$$

$$= \int_{0}^{10} .4 x$$

$$= 1$$

$$R(x) = \int_{0}^{x} .1 dx'$$

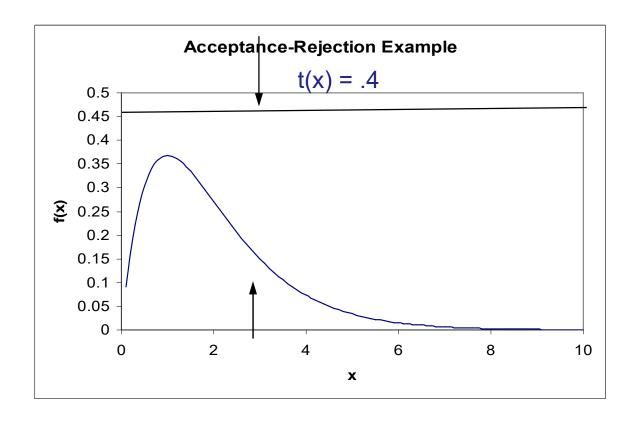
$$= .1x'$$

$$= 1$$
i.e. $r(x)$ is a density fn.

Acceptance – Rejection

The inverse transformation for R: X = 10Y.

For a random number Y = 0.3, This translates into an X of 3

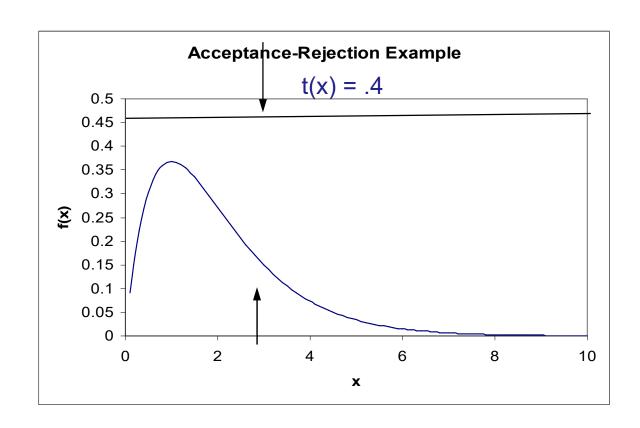


If we threw darts that could land only on the line x = 3, then the probability that a dart hitting inside the distribution would be f(X=3)/t(X=3).

Acceptance – Rejection

$$f(X=.3)/t(X=.3)$$

= .15/.4
= .375



Generate U~U(0,1).

If U is less than .375, we will accept X= 3 as coming from a gamma(2,1) distribution.

Otherwise, we will start the process over by selecting a new R and new U.

Derived Distributions

- Several distributions are derived from the gamma and normal
- Can take advantage of knowing how to generate those two distributions