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What is Monte Carlo 
Simulation ?

• Monte Carlo methods are a widely used class of 
computational algorithms for simulating the 
behavior of various physical and mathematical 
systems, and for other computations.

• Monte Carlo algorithm is often used to find solutions 
to mathematical numerical problems (which may 
have many variables) that cannot easily be solved, 
(e.g. integral calculus, or other numerical methods)

• Determine some value using random numbers that 
could be very difficult to do by other means

• Ex: Evaluating an integral that has no closed 
analytical form
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Monte Carlo Simulation

• Before any formal definitions, let's consider a 
simple example
– Let's assume we don't know the formula for the 

area of a circle, but we do know the formula for 
the area of a square

– We'd like to somehow find the area of a circle of a 
given radius (let's say 1)

2
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– Let's generate a (Big) number of random 
points in the square

• Test to see if each point is also in the circle
– Since we know the circle has a radius of 1, we can 

put its center at the origin and any random point a 
distance <= 1 from the origin is within the circle

• The ratio of points in the circle to total points 
generated should approximate the ratio of the 
area of circle to the area of the square

Monte Carlo Simulation
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• “Informal” theory behind M.C.
• Consider a random experiment with possible 

outcome C

• Run the experiment N times, counting the 
number of C outcomes, NC

• The relative frequency of occurrence of C is the 
ratio NC/N

• As N  , NC/N converges to the probability of 
C, or

N

N
Cp C

N 
 lim)(

Monte Carlo Simulation
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• In Probability: we determines probability of an event 
based on the number of ways it may occur out of the 
total number of possible outcomes that gives the 
"true" probability of a given event

• Whereas empirical probability only gives an estimate 
(since we cannot actually have N be infinity)

• However, for complex situations this could be quite 
difficult to do

– When axiomatic probability is not practical, 
empirical probability (Monte Carlo simulation) 
can often be a good substitute

• Can also be used to verify axiomatic results

Monte Carlo Simulation



M.C. in Integration

• Another common problem – evaluating 
an integral
– Many integrals have no closed form and 

can also be very difficult to evaluate with 
"traditional" numerical methods

– How can we use Monte Carlo simulation to 
evaluate these?

– Let's look at this in a somewhat simplified 
way (i.e. we will be light on the theory)
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Monte Carlo Simulation

• A scheme employing random numbers which is 

used to solve certain stochastic or deterministic 

problems where the passage of time plays no 

substantive role.

• Common problem is the estimation of                  

where f is a function, x is a vector and Ω is 

domain of integration.

• Special case: Estimate                 for scalar x

and limits of integration a, b
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Monte Carlo Simulation

Let X be a uniform random variable on the 

interval [a, b] with density

and let x1, …, xn be a random sample from X. 

Then
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Monte Carlo Simulation

Example: Estimate

We approximate this by

where x1, …, xn are a sample from a uniform [0, 
b] random variable. 
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Monte Carlo Simulation

Example: Estimate

There is considerable variability in the 
quality of solution; accuracy of numerical 
integration sensitive to integrand and 
domain of integration

n = 10 n = 100 n = 1000 n = 2000

b = 1
(answer = 2) 1.753 2.032 1.994 1.999

b = 2
(answer = 0) -0.898 -0.013 0.137 0.079


b

dxx
0

.)sin(
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Two Types of Approaches

• Direct
– Obtain an analytical expression

– Inverse transform
• Requires inverse of the distribution function

– Composition & Convolution
• For special forms of distribution functions

• Indirect
– Acceptance-rejection



Acceptance-Rejection Method

By Von Neumann (1951), used when the direct 
approaches fail or inefficient.

A closed form for F(X) does not exist, so what we’ll 
do is to add another distribution . For which we know 
“how to calculate the CDF and its inverse”.

We pick a function t(x) that is larger than f(x) for all x.  
Technically we say that t(x) majorizes f(x).
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Acceptance-Rejection Method
• Specify a function that majorizes the density

• t(x) is clearly not a density fun.

• New density function

• Algorithm to generate a r.v. with density f(x)
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Example:
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Example: More Efficient
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Ex. Beta Distribution

• Density

• No closed form CDF. No closed form inverse
• Must use numerical methods for inverse-

transform method
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Beta Distribution Shapes
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Beta(4,3) Example

• Density

• The distribution F(x) is a 6th degree polynomial, 
The inverse approach is not a good one.

• Try to find t(x)
put df/dx =0 to find the max of the f, which will 

be a x =0.6   , and f(0.6)=2.0736
• Put 

• Then  
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Beta(4,3) Example

So r(x) is just U(0,1)

The algorithm:

1. Generate Y having density of r(x) ; i.e. U(0,1) 

2. Generate U ~ U(0,1), independent of Y

3. If , return X=Y; Otherwise go to step 1
)(
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Acceptance – Rejection 
Technique for Gamma Dist.

Gamma Distribution
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A gamma(α,β) density

A closed form for F(X) 
does not exist, 
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Acceptance – Rejection 
Technique for Gamma Dist.

A gamma(2,1) 

We pick a function t(x) that 
is larger than f(x) for all x.  
t(x)=0.4

Acceptance-Rejection Example
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Acceptance-Rejection
Gamma(2,1)

If we selected t(x) = .4 0 <= x <= 10

Now t(x) is not a density function, why?

since its integral from 0 to 10 doesn’t add up to 1.

So let us define c: And r(x) = t(x)/c:

i.e. r(x) is a density fn.
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Acceptance – Rejection 

Acceptance-Rejection Example
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If we threw darts 
that could land only 
on the line x = 3, 
then the probability 
that a dart hitting 
inside the 
distribution would 
be f(X=3)/t(X=3).

The inverse transformation for R: X = 10Y.

For a random number Y = 0.3, 
This translates into an X of 3



Acceptance – Rejection 

Acceptance-Rejection Example
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Generate  U~U(0,1).  

If U is less than .375, 
we will accept X= 3 
as coming from a 
gamma(2,1) 
distribution.  

Otherwise, we will 
start the process 
over by selecting a 
new R and new U.

f(X=.3)/t(X=.3) 
= .15/.4
= .375
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Derived Distributions

• Several distributions are derived from 
the gamma and normal

• Can take advantage of knowing how to 
generate those two distributions


