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Some Examples

� Are the following simple events or not?

� Throwing Three coins

-> All coins show head

Yes 

-> Exactly one coin shows head

No

-> At least one coin show head

NO
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Some Examples

�What is the complement of the following

1- A: Every one failed exam

Ans: someone passed the exam

2- At most 5 students got an A in the exam

Ans: At least 6 students got an A in the exam

�Two fair 6-sided dice are rolled. What is the 

probability that their sum is 7 or exactly one die is 2

P(A or B) = P (A) + P(B) – P(A and B)

= 6/36 + 10/36- 2/36 = 7/18
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Some Examples

�Suppose that two cards are  drown from a standard 52 

card deck without replacement. Find the probability

1- both cards are two

Ans: 4/52 * 3/51 =  1/221

2- both cards are hearts

Ans: 13/52 * 12/52 = 1/17

�The first card is an ace and the second card is 2

Ans: 4/52 * 4/51 =  4/663
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Some Examples

�Suppose that two cards are  drown from a standard 52 

card deck with replacement. Find the probability

1- both cards are two

Ans: 4/52 * 4/52 =  1/169

2- both cards are hearts

Ans: 13/52 * 13/52 = 1/16

�The first card is an ace and the second card is 2

Ans: 4/52 * 4/52 =  1/169
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Some Examples

�A card is drawn from a standard 52-cards. Find the 

probability that the card is

1- A king given that the card is heart

Ans: (# of hearts that are kings)/(# of hears)= 1/13

2- A heart given that the card is a king

Ans: (# of kings)/(#of kings that are hears)=  1/4

�The first card is an ace and the second card is 2

Ans: 4/52 * 4/52 =  1/169
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Random Variables
Chapter 5

� Random variable
a variable (typically represented by x) 
that takes a numerical value by chance. 

� For each outcome of a procedure, x
takes a certain value, but for different 
outcomes that value may be different.
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Examples:

� Number of boys in a randomly selected 
family with three children.             
Possible values: x=0,1,2,3

� The weight of a randomly selected 
person from a population.                              
Possible values: positive numbers, x>0
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Discrete and Continuous 
Random Variables

� Discrete random variable
either a finite number of values or 
countable number of values (resulting 
from a counting process)

� Continuous random variable
infinitely many values, and those values 
can be associated with measurements on 
a continuous scale without gaps or 
interruptions
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Probability Distributions

� Probability distribution
a description that gives the probability 
for each value of the random variable; 
often expressed in the format of a table, 
graph, or formula

� Three ways to describe a distribution

� Formula

� Table

� Graph
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x P(x)

0 1/8

1 3/8

2 3/8

3 1/8

Tables

Values:    Probabilities:
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Graphs
The probability histogram is very similar 
to a relative frequency histogram, but the 
vertical scale shows probabilities.
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Requirements for 
Probability Distribution

P(x) = 1
where x assumes all possible values.

Σ

0 ≤≤≤≤ P(x) ≤≤≤≤ 1 
for every individual value of x.
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Mean, Variance and 
Standard Deviation of a 
Probability Distribution

µ = ΣΣΣΣ [x • P(x)] Mean

σσσσ
2
= ΣΣΣΣ [(x – µ)

2
• P(x)] Variance

σσσσ
2
= ΣΣΣΣ [x2

• P(x)] – µ
2

Variance (shortcut)

σσσσ = ΣΣΣΣ [x 2
• P(x)] – µ 2 Standard Deviation
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Example

• Find the mean and Standard deviation of the 

following discrete probability distribution

x P(x)

0 .10

1 .15

2 .45

3 .20

4 .20
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Example

• Find the mean and Standard deviation of the 

following discrete probability distribution

µ = ΣΣΣΣ [x • P(x)] =2.05 

σσσσ
2
= ΣΣΣΣ [x

2
• P(x)] – µ

2

=  1.07

x P(x) xP(x) x2P(x)

0 .10 0 0

1 .15 .15 .15

2 .45 .9 1.8

3 .20 .6 1.8

4 .20 .4 1.6

16Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

Roundoff Rule for 
µ, σσσσ,,,, and σσσσ

2

Round results by carrying one more 
decimal place than the number of decimal 
places used for the random variable x.

If the values of x are integers, round µ, 
σσσσ,,,,    and σ σ σ σ 2 to one (better two)decimal 
place.
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Identifying Unusual Results
Range Rule of Thumb

According to the range rule of thumb, 
most values should lie within 2 standard 
deviations of the mean.

We can therefore identify “unusual” 
values by determining if they lie outside 
these limits:

Maximum usual value = µ + 2σ

Minimum usual value =  µ – 2σ
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Identifying Unusual Results
By Probabilities

Using Probabilities to Determine When 
Results Are Unusual:

� Unusually high:  a particular value x is    
unusually high if P(x or more) ≤ 0.05.

� Unusually low:  a particular value x is     
unusually low if P(x or fewer) ≤ 0.05.
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Binomial Probability Distribution

A binomial probability distribution results from a 
procedure that meets all the following 
requirements:

1. The procedure has a fixed number of trials.

2. The trials must be independent.  (The outcome 
of any individual trial doesn’t affect the 
probabilities in the other trials.)

3. Each trial must have all outcomes classified 
into two categories (commonly referred to as 
success and failure).

4. The probability of a success remains the same 
in all trials.
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Notation for Binomial 
Probability Distributions

S and F (success and failure) denote the two 
possible categories of all outcomes; p and q
denote the probabilities of S and F, respectively: 

P(S) = p (p = probability of success)

P(F) = 1 – p = q (q = probability of failure)
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Notation (continued)

n denotes the fixed number of trials.     

x denotes a specific number of successes in n
trials, so x can be any whole number between 
0 and n, inclusive.

p denotes the probability of success in one of 
the n trials.     

q denotes the probability of failure in one of the 
n trials.     

P(x) denotes the probability of getting exactly x
successes among the n trials.     
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Methods for Finding 
Probabilities

We will now discuss two methods for 
finding the probabilities corresponding 
to the random variable x in a binomial 
distribution.
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Method 1: Using the Binomial 
Probability Formula

P(x) =                 • px • qn-x

(n – x )!x! 
n ! 

for x = 0, 1, 2, . . ., n

where

n = number of trials

x = number of successes among n trials

p = probability of success in any one trial

q = probability of failure in any one trial (q = 1 – p)
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Rationale for the Binomial 
Probability Formula

P(x) =             • px • qn-xn ! 

(n – x )!x!

Number of 
outcomes with 

exactly x
successes 

among n trials
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Rationale for the Binomial 
Probability Formula

P(x) =             • px • qn-xn ! 

(n – x )!x!

Number of 
outcomes with 

exactly x
successes 

among n trials

The probability 
of x successes 
among n trials 

for any one 
particular order
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Binomial Distribution: Formulas

Std. Dev.   σσσσ        =     n • p • q

Mean µ =  n • p

Variance σσσσ    
2
    =  n • p • q

Where

n = number of fixed trials

p = probability of success in one of the n trials

q = probability of failure in one of the n trials
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Interpretation of Results

Maximum usual values = µ + 2 σσσσ

Minimum usual values = µ – 2 σσσσ

It is especially important to interpret results.  
The range rule of thumb suggests that values 
are unusual if they lie outside of these limits:


