Some Examples

- Are the following simple events or not?
 - Throwing Three coins
 - -> All coins show head

Yes

-> Exactly one coin shows head

No

-> At least one coin show head

NO

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

1

Some Examples

- ❖ What is the complement of the following
- 1- A: Every one failed exam

Ans: someone passed the exam

2- At most 5 students got an A in the exam

Ans: At least 6 students got an A in the exam

❖ Two fair 6-sided dice are rolled. What is the probability that their sum is 7 or exactly one die is 2

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

= $6/36 + 10/36 - 2/36 = 7/18$

Some Examples

- Suppose that two cards are drown from a standard 52 card deck without replacement. Find the probability
- 1- both cards are two

Ans: 4/52 * 3/51 = 1/221

2- both cards are hearts

Ans: 13/52 * 12/52 = 1/17

The first card is an ace and the second card is 2.

Ans: 4/52 * 4/51 = 4/663

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

3

2

Some Examples

- ❖ Suppose that two cards are drown from a standard 52 card deck with replacement. Find the probability
- 1- both cards are two

Ans: 4/52 * 4/52 = 1/169

2- both cards are hearts

Ans: 13/52 * 13/52 = 1/16

The first card is an ace and the second card is 2.

Ans: 4/52 * 4/52 = 1/169

Some Examples

- ❖ A card is drawn from a standard 52-cards. Find the probability that the card is
- 1- A king given that the card is heart

Ans: (# of hearts that are kings)/(# of hears)= 1/13

2- A heart given that the card is a king

Ans: (# of kings)/(# of kings that are hears) = 1/4

The first card is an ace and the second card is 2

Ans: 4/52 * 4/52 = 1/169

Copyright @ 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

5

3

Random Variables Chapter 5

- * Random variable a variable (typically represented by x) that takes a numerical value by chance.
- For each outcome of a procedure, x takes a certain value, but for different outcomes that value may be different.

Examples:

Number of boys in a randomly selected family with three children.

Possible values: x=0,1,2,3

The weight of a randomly selected person from a population.

Possible values: positive numbers, x>0

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

7

4

Discrete and Continuous Random Variables

- Discrete random variable either a finite number of values or countable number of values (resulting from a counting process)
- Continuous random variable infinitely many values, and those values can be associated with measurements on a continuous scale without gaps or interruptions

Probability Distributions

- Probability distribution
 - a description that gives the probability for <u>each value</u> of the random variable; often expressed in the format of a table, graph, or formula
- Three ways to describe a distribution
 - Formula
 - Table
 - Graph

Copyright @ 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

5

Tables

Values: Probabilities:

X	P(x)
0	1/8
1	3/8
2	3/8
3	1/8

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

The probability histogram is very similar to a relative frequency histogram, but the vertical scale shows probabilities.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

11

6

Requirements for **Probability Distribution**

$$\sum P(x) = 1$$

where x assumes all possible values.

$$0 \le P(x) \le 1$$

for every individual value of x.

Mean, Variance and Standard Deviation of a **Probability Distribution**

$$\mu = \Sigma [x \cdot P(x)]$$

Mean

$$\sigma^2 = \Sigma [(x - \mu)^2 \cdot P(x)]$$
 Variance

$$\sigma^2 = \Sigma [x^2 \cdot P(x)] - \mu^2$$
 Variance (shortcut)

$$\sigma = \sqrt{\sum [x^2 \cdot P(x)] - \mu^2}$$
 Standard Deviation

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

13

Example

• Find the mean and Standard deviation of the following discrete probability distribution

X	P(x)	
0	.10	
1	.15	
2	.45	
3	.20	
4	.20	

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

Example

• Find the mean and Standard deviation of the following discrete probability distribution

X	P(x)	xP(x)	x ² P(x)
0	.10	0	0
1	.15	.15	.15
2	.45	.9	1.8
3	.20	.6	1.8
4	.20	.4	1.6

$$\mu = \Sigma [x \cdot P(x)] = 2.05$$

$$\sigma^2 = \Sigma \left[x^2 \cdot P(x) \right] - \mu^2$$
= 1.07

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

15

8

Roundoff Rule for μ , σ , and σ^2

Round results by carrying one more decimal place than the number of decimal places used for the random variable x.

If the values of x are integers, round μ , σ , and σ^2 to one (better two)decimal place.

Identifying *Unusual* Results Range Rule of Thumb

According to the range rule of thumb, most values should lie within 2 standard deviations of the mean.

We can therefore identify "unusual" values by determining if they lie outside these limits:

Maximum usual value = μ + 2σ

Minimum usual value = $\mu - 2\sigma$

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved

17

Identifying *Unusual* Results By Probabilities

Using Probabilities to Determine When Results Are Unusual:

- **❖ Unusually high:** a particular value x is unusually high if $P(x \text{ or more}) \le 0.05$.
- **❖ Unusually low:** a particular value x is unusually low if $P(x \text{ or fewer}) \le 0.05$.

Binomial Probability Distribution

A binomial probability distribution results from a procedure that meets all the following requirements:

- 1. The procedure has a fixed number of trials.
- 2. The trials must be independent. (The outcome of any individual trial doesn't affect the probabilities in the other trials.)
- 3. Each trial must have all outcomes classified into two categories (commonly referred to as success and failure).
- 4. The probability of a success remains the same in all trials.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

19

10

Notation for Binomial Probability Distributions

S and F (success and failure) denote the two possible categories of all outcomes; *p* and *q* denote the probabilities of S and F, respectively:

$$P(S) = p$$
 (p = probability of success)

$$P(F) = 1 - p = q$$
 (q = probability of failure)

Notation (continued)

- n denotes the fixed number of trials.
- denotes a specific number of successes in n
 trials, so x can be any whole number between
 and n, inclusive.
- denotes the probability of success in one of the n trials.
- q denotes the probability of failure in one of the n trials.
- P(x) denotes the probability of getting exactly x successes among the n trials.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

2

11

Methods for Finding Probabilities

We will now discuss two methods for finding the probabilities corresponding to the random variable x in a binomial distribution.

Method 1: Using the Binomial Probability Formula

$$P(x) = \frac{n!}{(n-x)!x!} \cdot p^x \cdot q^{n-x}$$

for
$$x = 0, 1, 2, ..., n$$

where

n = number of trials

x = number of successes among n trials

p = probability of success in any one trial

q = probability of failure in any one trial (q = 1 - p)

Copyright @ 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

23

12

Rationale for the Binomial Probability Formula

$$P(x) = \frac{n!}{(n-x)!x!} p^x \cdot q^{n-x}$$

Number of outcomes with exactly x successes among n trials

Rationale for the Binomial Probability Formula

$$P(x) = \frac{n!}{(n-x)!x!} \cdot p^x \cdot q^{n-x}$$

Number of outcomes with exactly x successes among n trials

The probability of x successes among n trials for any one particular order

Copyright @ 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

25

13

Binomial Distribution: Formulas

Mean $\mu = n \cdot p$

Variance $\sigma^2 = n \cdot p \cdot q$

Std. Dev. $\sigma = \sqrt{n \cdot p \cdot q}$

Where

n = number of fixed trials

p = probability of success in one of the*n*trials

q = probability of failure in one of the*n*trials

Interpretation of Results

It is especially important to interpret results. The range rule of thumb suggests that values are unusual if they lie outside of these limits:

Maximum usual values = μ + 2 σ Minimum usual values = μ - 2 σ

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.