Cairo University
Faculty of science
Mathematics Department
30 min.

Mid Term 2 Exam(Fall 2014) Artificial Intelligence (Comp408)

Name: ID:	
$\mathbf{Q}(1)$: True/False: a)Every existentially quantified sentence in first-order logic is truthat contains exactly one object.	ue in any model
false ex: $\exists x \ p(x) \land \neg p(x)$	
b) $\forall x \ \forall y \ equal(x,y)$ is satisfiable True : satisfieed by a model with exactly one object	
c) In propositional calculus, any sentences α, β, λ if $\alpha \models (\beta \lor \lambda)$ then $\alpha \models (\beta \land \lambda)$	
Q(2): Represent the following sentences in first-order logic (use func objects i.e. do NOT write something like redball(x)) Of course, you may have an equivalent correct answer a) Every red ball is made of rubber	tions, properties of
$\forall x \ (ball \ (x)^{\land} \ color(x, Red) \Rightarrow madeof(x, rubber))$	
b) Every student who passess AI is smart $\forall x \text{ student } (x) \land pass(x,AI) \Rightarrow smart(x)$	
c) Only one student passed the exam (\(\frac{1}{2}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}\)) \(^{\frac{1}{2}}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}\)) \(^{\frac{1}{2}}\)(\(\frac{1}{2}\)) \(^{\frac{1}{2}}\)(\(\frac{1}\)) \(\frac{1}\)(\frac{1}\)\(\frac{1}\)\(\fra	· (x=y)

	(3 points) "Every cat loves its mother or father" can be slated as:
i. ii. iii. iv. Ans: ii	$\forall x \ Cat(x) \rightarrow Loves(x, Mother(x) \lor Father(x)) \setminus \\ \forall x \neg Cat(x) \lor Loves(x, Mother(x)) \lor Loves(x, Father(x)) \setminus \\ \forall x \ Cat(x) \land (Loves(x, Mother(x)) \lor Loves(x, Father(x)) \setminus \\ \text{None of the above}$
	t the following sentence to conjunction normal form $imal(y) \Rightarrow Loves(x,y)$] $\Rightarrow [\exists y \ Loves(y,x)])$
Follow ste	ps in lec.
Q5) Write a element of L	
second(X,[_,	,x _]).

X = [b, d, f]