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Perceptrons

Perceptron learning algorithm:

1. Set the weights on the connections with random values.

2. Iterate through the training set, comparing the output of the network with 
the desired output for each example. 

3. If all the examples were handled correctly, then DONE.

4. Otherwise, update the weights for each incorrect example:
• if should have fired on x1, …,xn but didn't,  wi += xi  (0 <= i <= n)

• if shouldn't have fired on x1, …,xn but did,  wi -= xi (0 <= i <= n)

5. GO TO 2

Learning Algorithm

�Weights, initially, are set randomly

�For each training example E

Calculate the observed output from the ANN, o(E)

If the target output t(E) is different from o(E)
Then tweak all the weights so that o(E) gets closer to t(E)

Tweaking is done by perceptron training rule 

This routine is done for every example E

�Don’t necessarily stop when all examples used

Repeat the cycle again (an ‘epoch’) Until the ANN 
produces the correct output for “all “ the 
examples in the training set (or good enough)
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Perceptron training alg.
∆ wi = c(d-sign((Σxi wi ))xi

Where c is the learning rate, d is the desired output and 
sign(Σxi wi ) is the actual output

If the desired output and actual output are equal, do nothing

If the actual value is -1 and should be 1, increment the 
weights on the ith line by “2c xi “

If the actual value is 1 and should be -1, decrement the 
weights on the ith line by “2c xi “

i.e.  We can think of the addition of ∆wi as the movement of the 

weight in a direction Which will improve the networks performance 

with respect to the example. Multiplication by xi, Moves it more if the 

input is bigger

The Learning Rate 

∆ wi = c(d-sign((Σxi wi ))xi

� c (in some books η) is called the learning rate, Usually 
set to something small (e.g., 0.1)

� To control the movement of the weights Not to move too 
far for one example Which may over-compensate for 
another example

� If a large movement is actually necessary for the weights 
to correctly categorise the example

This will occur over time with multiple epochs 
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Example

Suppose we want to train this network  with 

Inputs: x1 = -1, x2 = 1, x3 = 1, x4 = -1, and output 1

Use a learning rate of η = 0.1 

Suppose we have set random weights:

The Error Values

∆ wi = η(d-sign((Σxi wi ))xi , η = 0.1 

x1 = -1, x2 = 1, x3 = 1, x4 = -1

Propagate this information through the network:
S = (-0.5 * 1) + (0.7 * -1) + (-0.2 * 1) + (0.1 * 1) + (0.9 * (-1)) = -2.2

Hence the network outputs -1

But this should have been +1
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The Error Values

∆ wi = η(d-sign((Σxi wi ))xi , η = 0.1 

x1 = -1, x2 = 1, x3 = 1, x4 = -1

Now: real output d=1 while calculated signΣxi wi =-1

∆w0 = 0.1 * (1 - (-1)) * (1) = 0.1 * (2) = 0.2

∆w1 = 0.1 * (1 - (-1)) * (-1) = 0.1 * (-2) = -0.2

∆w2 = 0.1 * (1 - (-1)) * (1) = 0.1 * (2) = 0.2

∆w3 = 0.1 * (1 - (-1)) * (1) = 0.1 * (2) = 0.2

∆w4 = 0.1 * (1 - (-1)) * (-1) = 0.1 * (-2) = -0.2

New Weights:  w’0 = -0.5 + ∆w0 = -0.5 + 0.2 = -0.3

w’1 = 0.7 + -0.2 = 0.5 w’2 = -0.2 + 0.2 = 0

w’3=  0.1 + 0.2 = 0.3 w’4 = 0.9 - 0.2 = 0.7

New Perceptron

Using the new weights:

w’0=-0.3, w’1=0.5, w’2=0,w’3=0.3,w’4 = 0.7

Calculating again: (x1 = -1, x2 = 1, x3 = 1, x4 = -1)
S = (-0.3 * 1) + (0.5 * -1) + (0 * +1) + (0.3 * +1) + (0.7 * -1) = -1.2

Still gets the wrong categorisation

But the value is closer to zero (from -2.2 to -1.2)

In a few epochs time, this example will be correctly categorised
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Boolean Functions as Perceptrons

�Perceptrons are very simple networks

�Perceptrons cannot learn some simple Boolean 
functions. 

�Killed the ANNs in AI for many years 
People thought it represented a fundamental limitation

But perceptrons are the simplest network ANNS were 
revived by neuroscientists later, etc.

�XOR boolean function cannot be represented as a 
perceptron because it is NOT

linearly separable

Linearly Separable Boolean Functions

Linearly separable:

Can use a line (dotted) to separate +1 and –1

Theorem: There is a perceptron that will learn any linearly 
separable function, given enough training examples.
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Linearly Separable Functions

Result extends to functions taking many inputs

And outputting +1 and –1

Also extends to higher dimensions for outputs

12

Perceptron Convergence 

Perceptron convergence theorem: If the data 
is linearly separable and therefore a set of weights 
exist that are consistent with the data, then the 
Perceptron algorithm will eventually converge to a 
consistent set of weights.

Perceptron cycling theorem: If the data is not 
linearly separable, the Perceptron algorithm will 
eventually repeat a set of weights and threshold at 
the end of some epoch and therefore enter an 
infinite loop.

By checking for repeated weights+threshold, one can 
guarantee termination with either a positive or negative 
result.
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Perceptron as Hill Climbing
The space being searched: is a set of weights and a 

threshold.

Goal:  is to minimize classification error on the training set.

Perceptron does hill-climbing (gradient descent) in this 
space, changing the weights a small amount at each point 
to decrease training set error.

For a single model neuron, the space is well behaved with a 
single minima.

In practice, converges fairly quickly for linearly separable 
data.

Perceptron and DT

Perceptron is 
better than DT on 
majority


