
3/6/2015

1

1

Perceptrons

Perceptron learning algorithm:

1. Set the weights on the connections with random values.

2. Iterate through the training set, comparing the output of the network with
the desired output for each example.

3. If all the examples were handled correctly, then DONE.

4. Otherwise, update the weights for each incorrect example:
• if should have fired on x1, …,xn but didn't, wi += xi (0 <= i <= n)

• if shouldn't have fired on x1, …,xn but did, wi -= xi (0 <= i <= n)

5. GO TO 2

Learning Algorithm

�Weights, initially, are set randomly

�For each training example E

Calculate the observed output from the ANN, o(E)

If the target output t(E) is different from o(E)
Then tweak all the weights so that o(E) gets closer to t(E)

Tweaking is done by perceptron training rule

This routine is done for every example E

�Don’t necessarily stop when all examples used

Repeat the cycle again (an ‘epoch’) Until the ANN
produces the correct output for “all “ the
examples in the training set (or good enough)

3/6/2015

2

Perceptron training alg.
∆ wi = c(d-sign((Σxi wi))xi

Where c is the learning rate, d is the desired output and
sign(Σxi wi) is the actual output

If the desired output and actual output are equal, do nothing

If the actual value is -1 and should be 1, increment the
weights on the ith line by “2c xi “

If the actual value is 1 and should be -1, decrement the
weights on the ith line by “2c xi “

i.e. We can think of the addition of ∆wi as the movement of the

weight in a direction Which will improve the networks performance

with respect to the example. Multiplication by xi, Moves it more if the

input is bigger

The Learning Rate

∆ wi = c(d-sign((Σxi wi))xi

� c (in some books η) is called the learning rate, Usually
set to something small (e.g., 0.1)

� To control the movement of the weights Not to move too
far for one example Which may over-compensate for
another example

� If a large movement is actually necessary for the weights
to correctly categorise the example

This will occur over time with multiple epochs

3/6/2015

3

Example

Suppose we want to train this network with

Inputs: x1 = -1, x2 = 1, x3 = 1, x4 = -1, and output 1

Use a learning rate of η = 0.1

Suppose we have set random weights:

The Error Values

∆ wi = η(d-sign((Σxi wi))xi , η = 0.1

x1 = -1, x2 = 1, x3 = 1, x4 = -1

Propagate this information through the network:
S = (-0.5 * 1) + (0.7 * -1) + (-0.2 * 1) + (0.1 * 1) + (0.9 * (-1)) = -2.2

Hence the network outputs -1

But this should have been +1

3/6/2015

4

The Error Values

∆ wi = η(d-sign((Σxi wi))xi , η = 0.1

x1 = -1, x2 = 1, x3 = 1, x4 = -1

Now: real output d=1 while calculated signΣxi wi =-1

∆w0 = 0.1 * (1 - (-1)) * (1) = 0.1 * (2) = 0.2

∆w1 = 0.1 * (1 - (-1)) * (-1) = 0.1 * (-2) = -0.2

∆w2 = 0.1 * (1 - (-1)) * (1) = 0.1 * (2) = 0.2

∆w3 = 0.1 * (1 - (-1)) * (1) = 0.1 * (2) = 0.2

∆w4 = 0.1 * (1 - (-1)) * (-1) = 0.1 * (-2) = -0.2

New Weights: w’0 = -0.5 + ∆w0 = -0.5 + 0.2 = -0.3

w’1 = 0.7 + -0.2 = 0.5 w’2 = -0.2 + 0.2 = 0

w’3= 0.1 + 0.2 = 0.3 w’4 = 0.9 - 0.2 = 0.7

New Perceptron

Using the new weights:

w’0=-0.3, w’1=0.5, w’2=0,w’3=0.3,w’4 = 0.7

Calculating again: (x1 = -1, x2 = 1, x3 = 1, x4 = -1)
S = (-0.3 * 1) + (0.5 * -1) + (0 * +1) + (0.3 * +1) + (0.7 * -1) = -1.2

Still gets the wrong categorisation

But the value is closer to zero (from -2.2 to -1.2)

In a few epochs time, this example will be correctly categorised

3/6/2015

5

Boolean Functions as Perceptrons

�Perceptrons are very simple networks

�Perceptrons cannot learn some simple Boolean
functions.

�Killed the ANNs in AI for many years
People thought it represented a fundamental limitation

But perceptrons are the simplest network ANNS were
revived by neuroscientists later, etc.

�XOR boolean function cannot be represented as a
perceptron because it is NOT

linearly separable

Linearly Separable Boolean Functions

Linearly separable:

Can use a line (dotted) to separate +1 and –1

Theorem: There is a perceptron that will learn any linearly
separable function, given enough training examples.

3/6/2015

6

Linearly Separable Functions

Result extends to functions taking many inputs

And outputting +1 and –1

Also extends to higher dimensions for outputs

12

Perceptron Convergence

Perceptron convergence theorem: If the data
is linearly separable and therefore a set of weights
exist that are consistent with the data, then the
Perceptron algorithm will eventually converge to a
consistent set of weights.

Perceptron cycling theorem: If the data is not
linearly separable, the Perceptron algorithm will
eventually repeat a set of weights and threshold at
the end of some epoch and therefore enter an
infinite loop.

By checking for repeated weights+threshold, one can
guarantee termination with either a positive or negative
result.

3/6/2015

7

13

Perceptron as Hill Climbing
The space being searched: is a set of weights and a

threshold.

Goal: is to minimize classification error on the training set.

Perceptron does hill-climbing (gradient descent) in this
space, changing the weights a small amount at each point
to decrease training set error.

For a single model neuron, the space is well behaved with a
single minima.

In practice, converges fairly quickly for linearly separable
data.

Perceptron and DT

Perceptron is
better than DT on
majority

