Fuzzy Operations

Fuzzy logic begins by borrowing notions from crisp logic,
same as fuzzy set theory borrows from crisp set theory. As
in the extension of crisp set theory to fuzzy set theory, the
extension of crisp logic to fuzzy logic is made by replacing
membership functions of crisp logic with fuzzy

membership functions

In Fuzzy Logic, intersection, union and complement are
defined in terms of their membership functions

Fuzzy intersection and union correspond to ‘AND’ and ‘OR’,
respectively, in classic/crisp/Boolean logic

Classic/Crisp/Boolean Logic
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Fuzzy Union

The union (OR) is calculated using t-conorms
t-conorm operator is a function s
Satisfying:
i s(1,1)=1, s(a,0) =s(0,a) = a (boundary)
ii. s(a,b) < s(c,d)ifa < cand b < d (monotonicity)
iii. s(a,b) = s(b,a) (commutativity)

iv. s(a,s(b,c)) = s(s(a,b),c) (associativity)

Fuzzy Union

The union (OR) is calculated using t-conorms
t-conorm operator is a function s
Satisfying:
i. s(1,1)=1, s(a,0) =s(0,a) = a (boundary)
ii. s(a,b) < s(c,d)ifa < cand b < d (monotonicity)
iii. s(a,b) = s(b,a) (commutativity)
iv. s(a,s(b,c)) = s(s(a,b),c) (associativity)
The most commonly used method for fuzzy union is to take

the maximum. That is, given two fuzzy sets A and B with
membership functions u ,(x) and u 4 x)

My (X) = max(u, (x), Uy (X))




Fuzzy Union

Additional requirements may be added to any t-conorm to
satisfy. The most famous are:
i.  uis continuous function
ii. u(a, a) > a (subidempotency)
iii. If a<b and c<d then u(a,c)<u(b,d) (strict monotonicity)

T-conorms frequently used,;

Standard union: u{a, b) = max(a, 5).
Algebraic sum: ufa, b) =a+ b — ab.
Bounded sum: ufa, b) = min(l, a + &).
a whenb=10
Drastic union: u(a, by ={ b whena=10
1 otherwise.




T-conorms frequently used,;
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Fuzzy Intersection

The intersection (AND) is calculated using t-norms.

t-norm operator is a function i

Satisfying:

1.

1.

1(0,0) =0, t(a,1) =1i(1,a) = a (boundary)

i(a,b) < i(c,d)if a < c and b < d (monotonicity)

iii. i(a,b) = i(b,a) (commutativity)

iv. i(a,i(b,c)) =i(i(a,b),c) (associativity)




Fuzzy Intersection

The intersection (AND) is calculated using t-norms.
t-norm operator is a function i
Satisfying:
i. 1(0,0)=0, t(a,1) =i(1,a) = a (boundary)
ii. i(a,b) <1i(c,d)ifa < cand b < d (monotonicity)
iii. i(a,b) = i(b,a) (commutativity)
iv. 1i(a, i(b,c)) =i(i(a,b),c) (associativity)
The most commonly adopted t-norm is the minimum. That
is, given two fuzzy sets A and B with membership
functions u 4(x) and y4(x)

Hanp (X) = min(, (x), 4, (X))

Fuzzy Intersection

Additional requirements may be added to any t-norm to
satisfy. The most famous are:

i. 1is continuous function
ii. 1i(a, a) < a (subidempotency)
iii. If a<b and c<d then i(a,c)<i(b,d) (strict monotonicity)




T-norms frequently used,,

Standard intersection : i(a, b) = min(a, b).

Algebraic product ; ({2, b) = qb
Bounded difference ; é(a2, &) = max{l, a + & — 1).

i

Drastic intersection : f(z, b) = { b

0

when b= 1
whepa =1
oltheraise,

T-norms frequently usedy;;,

TABLE3.2 SOME CLASSES OF FUZZY INTERSECTIONS (r-NORMS)
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Fuzzy Complement

To be able to develop fuzzy systems we also have to
deal with NOT or complement.

This is the same in fuzzy logic as for Boolean logic

For a fuzzy set A,Adenotes the fuzzy complement
of A

Membership function for fuzzy complement is

H (x)=1-p,(x)

Example Discrete case

Suppose we have the following (discrete) fuzzy sets:

A = 0.4/1+0.6/2+0.7/3+0.8/4

B = 0.3/1+0.65/2+0.4/3+0.1/4
The union of the fuzzy sets A and B
=0.4/1+0.65/2+0.7/3+0.8/4
The intersection of the fuzzy sets A and B
=0.3/1+0.6/2+0.4/3+0.1/4
The complement of the fuzzy set A
=0.6/1+0.4/2+0.3/3+0.2/4




Example Continuous case
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Fuzzy Operations
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Example

This example demonstrates that for fuzzy sets, the Law
of Excluded Middle and Concentration are broken,

i.e., for fuzzy sets A and B
AUA“#2X and ANA“ 20

In fact, one of the ways to describe the difference
between crisp set theory and fuzzy set theory is to
explain that these two laws do not hold in fuzzy set

theory

Definitions

> Ais EMPTY iff for all x, 1 4(x) = 0.0.

» A =B iff for all x: g (x) = gxx)

» A is CONTAINED in B or ACB iff g, A < uzB.
for all xe X

Proper Subset:
ACB if pn,(x)Spg(x) and L, (X)<pp(x) for at least one xe X




Basic Properties of set operations

Involution : (A%)° = A. (3.3)
Commutativity : AUB =BUA, ANB=BnA. (3.4)
Associativity : (AUB)UC =AU (BUC), (3.5)
(AnBINnC=An(Bna). (3.6)

Distributivity : AN(BUC)=(AnB)u(An(C), (3.7)
Au(BNC)=(AUB)N(AUC). (3.8)

Idempotency : ANA=4 404 =4 (3.9)

Law of Contradiction : AN A° = o, (3.10)

Law of Excluded Middle : AU A° = X. (3.11)

De Morgan : (AU B)® = A°n B*, (3.12)
(ANB) = A°u B, (3.13)

Identity: AUg=A,AN¢=2a, (3.14)
AUX =X, ANX =A. (3.15)

Students’ Topics

- Fuzzy Controller: Find an Example of

Contains: [Fuzzifier, fuzzy inference/Aggregation of
rules, defuzzifier]

->Fuzzy Expert System: Small example
—>Fuzzy Neural Network
->Solving Fuzzy Inequalities




