Design & Training Issues

Design:

Architecture of network Structure of artificial neurons Learning rules

Training:

Ensuring optimum training Learning parameters Data preparation

Network Design

Architecture of the network: How many nodes?

Determines number of network weights

How many layers?

How many nodes per layer?

Input Layer

Hidden Layer

Output Layer

Some Automated methods:

- augmentation (cascade correlation)
- · weight pruning and elimination

Network Design

Architecture of the network: Connectivity?

Concept of model or *hypothesis* space Constraining the number of hypotheses:

selective connectivity shared weights recursive connections

Network Design

Structure of artificial neuron nodes

Choice of input integration:

summed, squared and summed multiplied

Choice of activation (transfer) function:

sigmoid (logistic) hyperbolic tangent

Guassian linear

soft-max

+

Network Design

Selecting a Learning Rule

Generalized delta rule (steepest descent)

Momentum descent

Advanced weight space search techniques

Global Error function can also vary

- normal - quadratic - cubic

Network Training

How do you ensure that a network has been well trained?

- Objective: To achieve good generalization accuracy on new examples/cases
- Establish a maximum acceptable error rate
- ❖Train the network using a validation test set to tune it
- Validate the trained network against a separate test set which is usually referred to as a production test set

Network Training Approach #1: Large Sample When the amount of available data is large ... Available Examples 70% Divide randomly 30% Training Set Production Set Generalization error = test error Used to develop one ANN model Compute Test error

Network Training

How do you select between two ANN designs?

A statistical test of hypothesis is required to ensure that a significant difference exists between the error rates of two ANN models

If Large Sample method has been used then apply McNemar's test*

If Cross-validation then use a paired *t* test for difference of two proportions

Network Training

Common ANN Parameters

		<u>Typical</u>	<u>Range</u>
learning rate -	η	0.1	0.01 - 0.99
momentum -	α	0.8	0.1 - 0.9
weight-cost -	λ	0.1	0.001 - 0.5

Fine tuning: adjust individual parameters at each node and/or connection weight automatic adjustment during training

Network Training

Network weight initialization

Random initial values +/- some range Smaller weight values for nodes with many incoming connections

Rule of thumb: initial weight range should be approximately

 $\pm \frac{1}{\text{# weights}}$

coming into a node

Typical Problems During Training

Data Preparation

Garbage in **⇒** Garbage out

The quality of results relates directly to quality of the data

50%-70% of ANN development time will be spent on data preparation

The three steps of data preparation:

Consolidation and Cleaning Selection and Preprocessing

Transformation and Encoding

Data Preparation

Data Types and ANNs

Four basic data types- may be more:

- * nominal discrete symbolic (blue,red,green)
- ❖ ordinal discrete ranking (1st, 2nd, 3rd)
- * interval measurable numeric (-5, 3, 24)
- ❖ continuous numeric (0.23, -45.2, 500.43)

bp ANNs accept only continuous numeric values (typically 0 - 1 range)

Data Preparation

Consolidation and Cleaning

- > Determine appropriate input attributes
- Consolidate (merge) data into working database
- > Eliminate or estimate missing values
- > Remove *outliers* (obvious exceptions)
- ➤ Determine prior probabilities of categories and deal with *volume bias*

Data Preparation

Selection and Preprocessing

- ➤ Select examples random sampling
 Consider number of training examples?
- ➤ Reduce attribute dimensionality remove redundant and/or correlating attributes combine attributes (sum, multiply, difference)
- ➤ Reduce attribute value ranges group symbolic discrete values quantize continuous numeric values

Data Preparation

Transformation and Encoding

Nominal or Ordinal values

Transform to discrete numeric values Encode the value 4 as follows:

one-of-N code (0 1 0 0 0) - five inputs thermometer code (1 1 1 1 0) - five inputs real value $(0.4)^*$ - one input if ordinal

Consider relationship between values (single, married) vs. (youth, adult)

* Target values should be 0.1 - 0.9, not 0.0 - 1.0 range

Data Preparation

Transformation and Encoding

Interval or continuous numeric values

De-correlate example attributes via normalization of values:

Euclidean: $n = x/sqrt(sum \ of \ all \ x^2)$ Percentage: $n = x/(sum \ of \ all \ x)$

Variance based: n = (x - (mean of all x))/varianceScale values using a linear transform if data is uniformly distributed or use non-linear (log, power) if

skewed distribution

Data Preparation

Transformation and Encoding

Interval or continuous numeric values

Encode the value 1.6 as:

Single real-valued number (0.16)* - OK! Bits of a binary number (010000) - BAD! one-of-N quantized intervals (0 1 0 0 0) - NOT GREAT! - discontinuities distributed (fuzzy) overlapping intervals (0.3 0.8 0.1 0.0 0.0) - BEST!

* Target values should be 0.1 - 0.9 , not 0.0 - 1.0 range

After-Training Analysis

Examining the neural net model:

Visualizing the constructed model Detailed network analysis Sensitivity analysis of input attributes:

Analytical techniques Attribute elimination

After-Training Analysis

Visualizing the Constructed Model

Graphical tools can be used to display output response as selected input variables are changed

After-Training Analysis

Detailed network analysis

- > Hidden nodes form internal representation
- ➤ Manual analysis of weight values often difficult graphics very helpful
- ➤ Conversion to equation, executable code
- Automated ANN (computational models) to symbolic logic conversion is a hot (new/ hard) area of research

After-Training Analysis

Sensitivity analysis of input attributes

- ➤ Analytical techniques
 - factor analysis
 network weight analysis
- > Feature (attribute) elimination
 - · forward feature elimination
 - · backward feature elimination

The ANN Application Development Process

Guidelines for using neural networks

- 1. Try the best existing method first
- 2. Get a **big** training set
- 3. Try a NN without hidden units
- 4. Use a sensible coding for input variables
- 5. Consider methods of constraining network
- 6. Use a test set to prevent over-training
- 7. Determine confidence in generalization through cross-validation

Applications

- ➤ Pattern Recognition (reading zip codes)
- ➤ Signal Filtering (reduction of radio noise)
- ➤ Data Segmentation (detection of seismic onsets)
- ➤ Data Compression (TV image transmission)
- ➤ Database Mining (marketing, finance analysis)
- ➤ Adaptive Control (vehicle guidance)
- > Handwriting recognition
- ➤ Face recognition
- > Optical character recognition (OCR)

Applications

- ➤ Text to Speech (NetTalk)
- > Fraud detection

9 of top 10 US credit card companies use Falcon uses neural nets to model customer behavior, identify fraud claims

- > Prediction & Financial Analysis
 - In Banks: financial forecasting, investing, marketing analysis
- ➤ control & optimization
- Intel computer chip manufacturing quality control
 Intel computer chip manufacturing quality control
 AT&T (cell phones) echo & noise control in phone lines (filters and compensates)
 Ford engines utilize neural net chip to diagnose misfirings, reduce emissions