
4/3/2018

1

Propagate E through the Network

Feed E through the network (as in example above)

Record the target and observed values for example E

i.e., determine weighted sum from hidden units, do sigmoid calc

Let ti(E) be the target values for output unit i

Let oi(E) be the observed value for output unit i

For categorisation learning tasks,

Each ti(E) will be 0, except for a single tj(E), which will be 1

But oi(E) will be a real valued number between 0 and 1

Also record the outputs from the hidden units

Let hi(E) be the output from hidden unit i

Multi-layer Feed-forward ANNs

However ... there was no learning algorithm

to adjust the weights of a multi-layer
network - weights had to be set by hand.

How could the weights below the hidden layer
be updated?

The Back-propagation Algorithm

1986: the solution to multi-layer ANN weight

update rediscovered

Conceptually simple - the global error is backward

propagated to network nodes, weights are modified
proportional to their contribution

Most important ANN learning algorithm

Become known as back-propagation because
the error is send back through the network to
correct all weights

The Back-propagation Algorithm

Like the Perceptron - calculation of error is
based on difference between target and
actual output:

However in BP it is the rate of change of the
error which is the important feedback through
the network

generalized delta rule

Relies on the sigmoid activation function
ij

w
E

ij
w

δ
δη−=∆

2)(
2

1
j

j

j otE −= ∑

4/3/2018

2

The Back-propagation Algorithm

The Bp algorithm performs a gradient descent
in weights space toward a minimum level of
error using a fixed step size or learning rate

The gradient is given by :

= rate at which error changes as weights

change
ij

w
E

δ
δ

η

Backpropagation
Learning Algorithm

Same task as in perceptrons

Learn a multi-layer ANN to correctly categorise unseen examples

We’ll concentrate on ANNs with one hidden layer

Overview of the routine

Fix architecture and sigmoid units within architecture

i.e., number of units in hidden layer; the way the input units represent
example; the way the output units categorises examples

Randomly assign weights to the the whole network

Use small values (between –0.5 and 0.5)

Use each example in the set to retrain the weights

Have multiple epochs (iterations through training set)

Until some termination condition is met (not necessarily 100% acc)

Weight Training

The Back propagation algorithm is

1. start at the output layer and

2. propagate error backwards through

the hidden layer

• Use notation wij to specify: Weight between unit i and unit j

• Look at the calculation with respect to example E

• Calculate a value ∆ij for each wij And add ∆ij on to wij

• Do this by calculating error terms for each unit

• The error term for output units is found And then this
information is used to calculate the error terms for the
hidden units

So, the error is propagated back through the ANN

Error terms for each unit

The Error Term for output unit k is calculated as:

The Error Term for hidden unit k is:

i.e. For hidden unit h, add together all the errors
for the output units, multiplied by the

appropriate weight. Then multiply their sum by
hk(E)(1 – hk(E))

4/3/2018

3

Final Calculations
Choose a learning rate, η (= 0.1 say)

For each weight wij

Between input unit i and hidden unit j

Calculate: ∆ wiij= ηδHi xi

Where xi is the input to the system to input unit i for E

For each weight wij between hidden unit i and output unit j

Calculate: ∆ wiij= ηδOi hi (E)

Where hi(E) is the output from hidden unit i for E

Finally, add on each ∆wij on to wij

Worked Backpropagation
Example

Start with the previous ANN

We will retrain the weights

In the of example E = (10,30,20)

Assume that E should have been categorised as O1

(not O2 as the calculated result)

Will use a learning rate of η = 0.1

Previous Calculations

Need the calculations from when we

propagated E through the ANN:

o1(E) = 0.750 and o2(E) = 0.957

t1(E) = 1 and t2(E) = 0 [Assumption says it
should be O1]

Error Values for Output Units

t1(E) = 1 and t2(E) = 0 o1(E) = 0.750 and

o2(E) = 0.957

So:

4/3/2018

4

Error Values for Hidden Units

Now: δO1 = 0.0469 and δO2 = -0.0394

h1(E) = 0.999 and h2(E) = 0.0067 (output of hidden
from the table)

So, for H1, we add together:

(w11*δ01) + (w12*δO2) = (1.1*0.0469)+(3.1*-0.0394) = -0.0706

And multiply by: h1(E)(1-h1(E)) to give us:

δH1 = -0.0706 * (0.999 * (1-0.999)) = 0.0000705

For H2, we add together:

(w21*δ01) + (w22*δO2) = (0.1*0.0469)+(1.17*-0.0394) = -0.0414

And multiply by: h2(E)(1-h2(E)) to give us:

δH2 =-0.0414 * (0.067 * (1-0.067)) = -0.00259

Calculation of Weight Changes

For weights between the input and hidden layer

each wij And add ∆ij on to wij

Calculation of Weight Changes

For weights between hidden and output layer

Weight changes are not very large

Small differences in weights can make big differences in calculations

But it might be a good idea to increase η

Calculation of Network Error

Could calculate Network error as

Proportion of mis-categorised examples

But there are multiple output units, with numerical output

So we use a more sophisticated measure:

Not as complicated as it looks

Square the difference between target and observed

Squaring ensures we get a positive number

Add up all the squared differences

For every output unit and every example in training set

4/3/2018

5

17

The algorithm is composed of two parts that get repeated

over and over a number of epochs.

I. The feedforward : the activation values of the hidden

and then output units are computed.

II. The backpropagation : the weights of the network

are updated--starting with the hidden to output

weights and followed by the input to hidden weights--

with respect to the sum of squares error, the Delta
Rule.

Backpropagation Training
Algorithm

18

Backpropagation Training
Algorithm

Until all training examples produce the correct value (within ε), or

mean squared error stops to decrease, or other termination
criteria:

Begin epoch
For each training example, E, do:

Calculate network output for E’s input values

Compute error between current output and correct
output or E

Update weights by backpropagating error and using
learning rule

End epoch

19

Backpropagation: The Momentum
Backpropagation has the disadvantage of being too

slow if η, the learning rate, is small and it can

oscillate too widely if η is large.

To solve this problem, we can add a momentum to
give each connection some inertia, forcing it to

change in the direction of the downhill “force”.

Old Delta Rule: ∆ wiij= ηδHi xi , ∆ wiij= ηδOi hi (E)

New Delta Rule: ∆ wiij(t+1) = η δHi xi + αααα ∆ wiij(t)

And ∆ wiij(t+1) = η δOi hi (E)+ αααα ∆ wiij(t)

where i,j are any input and hidden, or, hidden and output units;

t is a time step or epoch;

and αααα is the momentum parameter which regulates the amount of

inertia of the weights.
20

�Not guaranteed to converge to zero training error,

may converge to local optima or oscillate

indefinitely.

� In practice, it does converge to low error for many

large networks on real data.

�Many epochs (thousands) may be required, hours

or days of training for large networks.

�To avoid local-minima problems, run several trials

starting with different random weights (random
restarts).

Backpropagation Training
Algorithm

4/3/2018

6

Pros of Backpropagation

�Proven training method for multi-layer nets

�Able to learn any arbitrary function (XOR)

�Most useful for non-linear mappings

�Works well with noisy data

�Generalizes well given sufficient examples

�Rapid recognition speed

�Has inspired many new learning algorithms

Cons of Backpropagation

�May fall in Local minimum - but not generally
a concern

�Seems complicated biologically implausible

�Space and time complexity high:
lengthy training times

�May still be considered as a black box: how it’s
making decisions?

�Best suited for supervised learning only

�Works poorly on dense data with few input
variables

)(3
WO

23

Hidden Unit Representations

Trained hidden units can be seen as newly

constructed features that make the target concept
linearly separable in the transformed space.

On many real domains, hidden units can be
interpreted as representing meaningful features

such as vowel detectors or edge detectors, etc..

However, the hidden layer can also become a

distributed representation of the input in which
each individual unit is not easily interpretable as a

meaningful feature.

24

ANN Representing function Thms

Boolean functions: Any Boolean function can be

represented by a two-layer network with sufficient
hidden units.

Continuous functions: Any bounded continuous
function can be approximated with arbitrarily small

error by a two-layer network.

Arbitrary function: Any function can be

approximated to arbitrary accuracy by a three-
layer network.

4/3/2018

7

Generalization

The objective of learning is to achieve good

generalization to new cases, otherwise just
use a look-up table.

Generalization can be defined as a

mathematical interpolation or regression
over a set of training points:

f(x)

x

GeneralizationGeneralization

Weight Decay: an automated method of
effective weight control

Adjust the bp error function to penalize the
growth of unnecessary weights:

where: = weight -cost parameter

is decayed by an amount proportional to its
magnitude;

∑∑ +−=
i

ijj

j

j
wotE

22

2
)(

2

1 λ
ijijij www λ−∆=∆

λ

ijw

GeneralizationGeneralization

A Probabilistic Guarantee

N = # hidden nodes m = # training cases

W = # weights = error tolerance (< 1/8)

Network will generalize with 95% confidence if:

1. Error on training set <

2.

ε

2/ε

εεε

W
m

NW
Om >≈>)log(2

Over-Training

Is the equivalent of over-fitting a set of data

points to a curve which is too complex

Occam’s Razor (1300s) : “plurality should
not be assumed without necessity”

The simplest model which explains the
majority of the data is usually the best

4/3/2018

8

Preventing Over-training

�Use a separate test or tuning set of examples

�Monitor error on the test set as network
trains

�Stop network training just prior to over-fit
error occurring - early stopping or tuning

�Number of effective weights is reduced

�Most new systems have automated early
stopping methods

