
3/18/2015

1

N-layer Feed Forward Network

Layer 0 is input nodes

Layers 1 to N-1 are hidden nodes

Layer N is output nodes

All nodes at any layer k are connected to all nodes at
layer k+1

There are no cycles

Theorem:

Given an arbitrary number of hidden units, any Boolean
function can be computed with a single hidden layer.

XOR Solution

3/18/2015

2

Multi-Layer Networks
Built from Perceptron Units

Perceptrons are not able to learn certain concepts

Can only learn linearly separable functions

But they can be the basis for larger structures

Which can learn more sophisticated concepts

Say that the networks have “perceptron units”

Problem With Perceptron Units

�Needs the output of a unit to be a
differentiable function

�That is: The learning rule relies on
minimizing the error. Finding minima by
differentiating.

�Step functions aren’t differentiable. They are
not continuous

�Alternative threshold function are to be used
Must be differentiable

Must be similar to step function

�Sigmoid units used for backpropagation
(There are other alternatives that may be used)

3/18/2015

3

Sigmoid Units

Take in weighted sum of inputs, S

Then the out isoutput:

Advantages:

Looks very similar to the step function

Is differentiable

Derivative easily expressible in terms of σ itself:

Example ANN with Sigmoid Units

Feed forward network

Feed inputs in on the left, propagate numbers forward

Suppose we have this ANN

With weights set arbitrary

3/18/2015

4

Propagation of Example

With an example E:

Suppose the input to this ANN is 10, 30, 20

First calculate weighted sums to hidden layer:

SH1 = (0.2*10) + (-0.1*30) + (0.4*20) = 2-3+8 = 7

SH2 = (0.7*10) + (-1.2*30) + (1.2*20) = 7-6+24= -5

Next calculate the output from the hidden layer Using:
σ(S) = 1/(1 + e-S)

σ(SH1) = 1/(1 + e-7) = 1/(1+0.000912) = 0.999

σ(SH2) = 1/(1 + e5) = 1/(1+148.4) = 0.0067

Propagation of Example

Next calculate the weighted sums into

the output layer:

SO1 = (1.1 * 0.999) + (0.1 * 0.0067) = 1.0996

SO2 = (3.1 * 0.999) + (1.17 * 0.0067) = 3.1047

Finally, calculate the output from the ANN

σ(SO1) = 1/(1+e-1.0996) = 1/(1+0.333) = 0.750

σ(SO2) = 1/(1+e-3.1047) = 1/(1+0.045) = 0.957

Output from O2 > output from O1

So, the ANN predicts category associated with O2

For the example input (10,30,20)

3/18/2015

5

Propagate E through the Network

Feed E through the network (as in example above)

Record the target and observed values for example E

i.e., determine weighted sum from hidden units, do sigmoid calc

Let ti(E) be the target values for output unit i

Let oi(E) be the observed value for output unit i

For categorisation learning tasks,

Each ti(E) will be 0, except for a single tj(E), which will be 1

But oi(E) will be a real valued number between 0 and 1

Also record the outputs from the hidden units

Let hi(E) be the output from hidden unit i

Backpropagation
Learning Algorithm

Same task as in perceptrons

Learn a multi-layer ANN to correctly categorise unseen examples

We’ll concentrate on ANNs with one hidden layer

Overview of the routine

Fix architecture and sigmoid units within architecture

i.e., number of units in hidden layer; the way the input units represent
example; the way the output units categorises examples

Randomly assign weights to the the whole network

Use small values (between –0.5 and 0.5)

Use each example in the set to retrain the weights

Have multiple epochs (iterations through training set)

Until some termination condition is met (not necessarily 100% acc)

3/18/2015

6

Weight Training

The Back propagation algorithm is

1. start at the output layer and

2. propagate error backwards through

the hidden layer

• Use notation wij to specify: Weight between unit i and unit j

• Look at the calculation with respect to example E

• Calculate a value ∆ij for each wij And add ∆ij on to wij

• Do this by calculating error terms for each unit

• The error term for output units is found And then this
information is used to calculate the error terms for the
hidden units

So, the error is propagated back through the ANN

Error terms for each unit

The Error Term for output unit k is calculated as:

The Error Term for hidden unit k is:

i.e. For hidden unit h, add together all the errors
for the output units, multiplied by the
appropriate weight. Then multiply their sum by
hk(E)(1 – hk(E))

3/18/2015

7

Final Calculations
Choose a learning rate, η (= 0.1 say)

For each weight wij

Between input unit i and hidden unit j

Calculate: ∆ wiij= ηδHi xi

Where xi is the input to the system to input unit i for E

For each weight wij between hidden unit i and output unit j

Calculate: ∆ wiij= ηδOi hi (E)

Where hi(E) is the output from hidden unit i for E

Finally, add on each ∆wij on to wij

Worked Backpropagation
Example

Start with the previous ANN

We will retrain the weights

In the of example E = (10,30,20)

Assume that E should have been categorised as O1
(not O2 as the calculated result)

Will use a learning rate of η = 0.1

3/18/2015

8

Previous Calculations

Need the calculations from when we
propagated E through the ANN:

o1(E) = 0.750 and o2(E) = 0.957

t1(E) = 1 and t2(E) = 0 [Assumption says it
should be O1]

Error Values for Output Units

t1(E) = 1 and t2(E) = 0 o1(E) = 0.750 and
o2(E) = 0.957

So:

3/18/2015

9

Error Values for Hidden Units

Now: δO1 = 0.0469 and δO2 = -0.0394

h1(E) = 0.999 and h2(E) = 0.0067 (output of hidden
from the table)

So, for H1, we add together:

(w11*δ01) + (w12*δO2) = (1.1*0.0469)+(3.1*-0.0394) = -0.0706

And multiply by: h1(E)(1-h1(E)) to give us:

δH1 = -0.0706 * (0.999 * (1-0.999)) = 0.0000705

For H2, we add together:

(w21*δ01) + (w22*δO2) = (0.1*0.0469)+(1.17*-0.0394) = -0.0414

And multiply by: h2(E)(1-h2(E)) to give us:

δH2 =-0.0414 * (0.067 * (1-0.067)) = -0.00259

Calculation of Weight Changes

For weights between the input and hidden layer

each wij And add ∆ij on to wij

3/18/2015

10

Calculation of Weight Changes

For weights between hidden and output layer

Weight changes are not very large

Small differences in weights can make big differences in calculations

But it might be a good idea to increase η

Calculation of Network Error

Could calculate Network error as

Proportion of mis-categorised examples

But there are multiple output units, with numerical output

So we use a more sophisticated measure:

Not as complicated as it looks

Square the difference between target and observed

Squaring ensures we get a positive number

Add up all the squared differences

For every output unit and every example in training set

3/18/2015

11

21

The algorithm is composed of two parts that get repeated
over and over a number of epochs.

I. The feedforward : the activation values of the hidden

and then output units are computed.

II. The backpropagation : the weights of the network

are updated--starting with the hidden to output

weights and followed by the input to hidden weights--

with respect to the sum of squares error, the Delta
Rule.

Backpropagation Training
Algorithm

22

Backpropagation Training
Algorithm

Until all training examples produce the correct value (within ε), or

mean squared error stops to decrease, or other termination

criteria:

Begin epoch

For each training example, E, do:

Calculate network output for E’s input values

Compute error between current output and correct

output or E

Update weights by backpropagating error and using

learning rule

End epoch

3/18/2015

12

23

Backpropagation: The Momentum
Backpropagation has the disadvantage of being too

slow if η, the learning rate, is small and it can
oscillate too widely if η is large.

To solve this problem, we can add a momentum to
give each connection some inertia, forcing it to
change in the direction of the downhill “force”.

Old Delta Rule: ∆ wiij= ηδHi xi , ∆ wiij= ηδOi hi (E)

New Delta Rule: ∆ wiij(t+1) = η δHi xi + αααα ∆ wiij(t)

And ∆ wiij(t+1) = η δOi hi (E)+ αααα ∆ wiij(t)

where i,j are any input and hidden, or, hidden and output units;

t is a time step or epoch;

and αααα is the momentum parameter which regulates the amount of

inertia of the weights.

24

�Not guaranteed to converge to zero training error,

may converge to local optima or oscillate

indefinitely.

� In practice, it does converge to low error for many

large networks on real data.

�Many epochs (thousands) may be required, hours
or days of training for large networks.

�To avoid local-minima problems, run several trials

starting with different random weights (random
restarts).

Backpropagation Training
Algorithm

3/18/2015

13

25

Hidden Unit Representations

Trained hidden units can be seen as newly
constructed features that make the target concept
linearly separable in the transformed space.

On many real domains, hidden units can be
interpreted as representing meaningful features
such as vowel detectors or edge detectors, etc..

However, the hidden layer can also become a
distributed representation of the input in which
each individual unit is not easily interpretable as a
meaningful feature.

26

ANN Representing function

Boolean functions: Any Boolean function can be
represented by a two-layer network with sufficient
hidden units.

Continuous functions: Any bounded continuous
function can be approximated with arbitrarily small
error by a two-layer network.

Arbitrary function: Any function can be
approximated to arbitrary accuracy by a three-
layer network.

3/18/2015

14

27

Applications of ANNs

Fraud detection

9 of top 10 US credit card companies use Falcon uses neural
nets to model customer behavior, identify fraud claims

Prediction & Financial Analysis
In Banks: financial forecasting, investing, marketing analysis

control & optimization
� Intel – computer chip manufacturing quality control
� AT&T (cell phones) – echo & noise control in phone lines (filters

and compensates)
� Ford engines utilize neural net chip to diagnose misfirings,

reduce emissions

Text to Speech (NetTalk)

Handwriting recognition

Face recognition

Optical character recognition (OCR)

Game Playing

