
3/17/2019

1

Multi-layer Networks and PerceptronsPerceptrons

- Have one or more
layers of hidden units.

- With two possibly
very large hidden
layers, it is possible
to implement any
function.

- Networks without hidden
layer are called
perceptrons.

- Perceptrons are very
limited in what they can
represent, but this makes
their learning problem
much simpler.

- First studied in the late 1950s.

- Also known as Layered Feed-Forward Networks.

- The only efficient learning element at that time was
for single-layered networks.

- Today, used as a synonym for a single-layer,
feed-forward network.

Perceptron

3/17/2019

2

Perceptrons
Early neural nets

4

Perceptron (artificial neuron)

x a

x b

+ >10?

inputs weights

output

threshold

3/17/2019

3

5

Example of Training

Inputs and outputs are 0 (no) or 1 (yes)

Initially, weights are random

Provide training input

Compare output of neural network to desired
output

If same, reinforce patterns

If different, adjust weights

6

Example

If both inputs are 1, output should be 1.

x 2

x 3

+ >10?

inputs weights

output

threshold

3/17/2019

4

7

Example

If both inputs are 1, output should be 1.

x 2

x 3

+ >10?

inputs weights

output

threshold
1

1

8

Example

If both inputs are 1, output should be 1.

x 2

x 3

+ >10?

inputs weights

output

threshold
1

1

2

3

3/17/2019

5

9

Example

If both inputs are 1, output should be 1.

x 2

x 3

+ >10?

inputs weights

output

threshold
1

1

2

3

5

10

Example

If both inputs are 1, output should be 1.

x 2

x 3

+ >10?

inputs weights

output

threshold
1

1

2

3

5
0

3/17/2019

6

11

Example

If both inputs are 1, output should be 1.

x 2

x 3

+ >10?

inputs weights

output

threshold
1

1

2

3

5
0

12

Example

If both inputs are 1, output should be 1.

x 2

x 3

+ >10?

inputs weights

output

threshold
1

1

2

3

5
0

3/17/2019

7

13

Example

If both inputs are 1, output should be 1.

x 2

x 3

+ >10?

inputs weights

output

threshold
1

1

Repeat for all inputs until weights stop changing.

14

Computations

Consider the perceptron:

Multiple input nodes

Single output node

Takes a weighted sum of the inputs, call this S

Unit function calculates the output for the network

if Σwixi >= θθθθ, output = 1

if Σwixi < θθθθ, output = 0

θ

x
1

x
n

x
2

. . .

w
1

w
2

w
n

3/17/2019

8

15

Computation via activation

function
can view an artificial neuron as a computational

element accepts or classifies an input if the
output fires

INPUT: x1 = 1, x2 = 1

.75*1 + .75*1 = 1.5 >= 1 � OUTPUT: 1

INPUT: x1 = 1, x2 = 0

.75*1 + .75*0 = .75 < 1 � OUTPUT: 0

INPUT: x1 = 0, x2 = 1

.75*0 + .75*1 = .75 < 1 � OUTPUT: 0

INPUT: x1 = 0, x2 = 0

.75*0 + .75*0 = 0 < 1 � OUTPUT: 0

1

x
1

x
2

.75 .75

this neuron computes the AND function

16

Exercise

specify weights and thresholds to compute OR

INPUT: x1 = 1, x2 = 1

w1*1 + w2*1 >= θθθθ � OUTPUT: 1

INPUT: x1 = 1, x2 = 0

w1*1 + w2*0 >= θθθθ � OUTPUT: 1

INPUT: x1 = 0, x2 = 1

w1*0 + w2*1 >= θθθθ � OUTPUT: 1

INPUT: x1 = 0, x2 = 0

w1*0 + w2*0 < θθθθ � OUTPUT: 0

θ

x
1

x
2

w
1

w
2

3/17/2019

9

17

Another exercise?

specify weights and thresholds to compute XOR

INPUT: x1 = 1, x2 = 1

w1*1 + w2*1 >= θθθθ � OUTPUT: 0

INPUT: x1 = 1, x2 = 0

w1*1 + w2*0 >= θθθθ � OUTPUT: 1

INPUT: x1 = 0, x2 = 1

w1*0 + w2*1 >= θθθθ � OUTPUT: 1

INPUT: x1 = 0, x2 = 0

w1*0 + w2*0 < θθθθ � OUTPUT: 0

θ

x
1

x
2

w
1

w
2

we'll come back to this later…

18

Normalizing thresholds

to make life more uniform, can normalize the
threshold to 0

simply add an additional input x0 = 1, w0 = -θ

θ

x
1

x
n

x
2

. . .

w
1

w
2

w
n

advantage: threshold = 0 for all neurons

Σwixi >= θθθθ ≡≡≡≡ -θθθθ*1 + Σwixi >= 0

0

x
1

x
n

x
2

. . .

w
1

w
2

w
n

1

−θ

3/17/2019

10

19

Normalized examples

INPUT: x1 = 1, x2 = 1

1*-1 + .75*1 + .75*1 = .5 >= 0 � OUTPUT: 1

INPUT: x1 = 1, x2 = 0

1*-1 +.75*1 + .75*0 = -.25 < 0 � OUTPUT: 0

INPUT: x1 = 0, x2 = 1

1*-1 +.75*0 + .75*1 = -.25 < 0 � OUTPUT: 0

INPUT: x1 = 0, x2 = 0

1*-1 +.75*0 + .75*0 = -1 < 0 � OUTPUT: 0

0

x
1

x
2

.75
.75-1

1

AND

INPUT: x1 = 1, x2 = 1

1*-.5 + .75*1 + .75*1 = 1 >= 0 � OUTPUT: 1

INPUT: x1 = 1, x2 = 0

1*-.5 +.75*1 + .75*0 = .25 >0 � OUTPUT: 1

INPUT: x1 = 0, x2 = 1

1*-.5 +.75*0 + .75*1 = .25 < 0 � OUTPUT: 1

INPUT: x1 = 0, x2 = 0

1*-.5 +.75*0 + .75*0 = -.5 < 0 � OUTPUT: 0

0

x
1

x
2

.75
.75-.5

1

OR

20

Perceptrons

Rosenblatt (1958) devised a learning algorithm for artificial
neurons

start with a training set (example inputs & corresponding
desired outputs)

train the network to recognize the examples in the training set
(by adjusting the weights on the connections)

once trained, the network can be applied to new examples
Perceptron learning algorithm:

1. Set the weights on the connections with random values.

2. Iterate through the training set, comparing the output of the network with the
desired output for each example.

3. If all the examples were handled correctly, then DONE.

4. Otherwise, update the weights for each incorrect example:

• if should have fired on x1, …,xn but didn't, wi += xi (0 <= i <= n)

• if shouldn't have fired on x1, …,xn but did, wi -= xi (0 <= i <= n)

5. GO TO 2

3/17/2019

11

21

Example: perceptron learning

Suppose we want to train a perceptron to
compute AND

training set: x1 = 1, x2 = 1 � 1

x1 = 1, x2 = 0 � 0
x1 = 0, x2 = 1 � 0
x1 = 0, x2 = 0 � 0

0

1 x
2

x
1

-0.9
0.6

0.2

randomly, let: w0 = -0.9, w1 = 0.6, w2 = 0.2

using these weights:
x1 = 1, x2 = 1: -0.9*1 + 0.6*1 + 0.2*1 = -0.1 � 0 WRONG
x1 = 1, x2 = 0: -0.9*1 + 0.6*1 + 0.2*0 = -0.3 � 0 OK
x1 = 0, x2 = 1: -0.9*1 + 0.6*0 + 0.2*1 = -0.7 � 0 OK
x1 = 0, x2 = 0: -0.9*1 + 0.6*0 + 0.2*0 = -0.9 � 0 OK

new weights: w0 = -0.9 + 1 = 0.1
w1 = 0.6 + 1 = 1.6
w2 = 0.2 + 1 = 1.2

22

Example: perceptron learning

0

1 x
2

x
1

0.1
1.6

1.2

using these updated weights:
x1 = 1, x2 = 1: 0.1*1 + 1.6*1 + 1.2*1 = 2.9 � 1 OK
x1 = 1, x2 = 0: 0.1*1 + 1.6*1 + 1.2*0 = 1.7 � 1 WRONG
x1 = 0, x2 = 1: 0.1*1 + 1.6*0 + 1.2*1 = 1.3 � 1 WRONG
x1 = 0, x2 = 0: 0.1*1 + 1.6*0 + 1.2*0 = 0.1 � 1 WRONG

new weights: w0 = 0.1 - 1 - 1 - 1 = -2.9
w1 = 1.6 - 1 - 0 - 0 = 0.6
w2 = 1.2 - 0 - 1 - 0 = 0.2

0

1 x
2

x
1

-2.9
0.6

0.2

using these updated weights:
x1 = 1, x2 = 1: -2.9*1 + 0.6*1 + 0.2*1 = -2.1 � 0 WRONG
x1 = 1, x2 = 0: -2.9*1 + 0.6*1 + 0.2*0 = -2.3 � 0 OK
x1 = 0, x2 = 1: -2.9*1 + 0.6*0 + 0.2*1 = -2.7 � 0 OK
x1 = 0, x2 = 0: -2.9*1 + 0.6*0 + 0.2*0 = -2.9 � 0 OK

new weights: w0 = -2.9 + 1 = -1.9
w1 = 0.6 + 1 = 1.6
w2 = 0.2 + 1 = 1.2

3/17/2019

12

23

Example: perceptron learning

0

1 x
2

x
1

-1.9
1.6

1.2

using these updated weights:
x1 = 1, x2 = 1: -1.9*1 + 1.6*1 + 1.2*1 = 0.9 � 1 OK
x1 = 1, x2 = 0: -1.9*1 + 1.6*1 + 1.2*0 = -0.3 � 0 OK
x1 = 0, x2 = 1: -1.9*1 + 1.6*0 + 1.2*1 = -0.7 � 0 OK
x1 = 0, x2 = 0: -1.9*1 + 1.6*0 + 1.2*0 = -1.9 � 0 OK

DONE!

EXERCISE: train a perceptron to compute OR

24

Perceptrons

Perceptron learning algorithm:

1. Set the weights on the connections with random values.

2. Iterate through the training set, comparing the output of the network with
the desired output for each example.

3. If all the examples were handled correctly, then DONE.

4. Otherwise, update the weights for each incorrect example:
• if should have fired on x1, …,xn but didn't, wi += xi (0 <= i <= n)

• if shouldn't have fired on x1, …,xn but did, wi -= xi (0 <= i <= n)

5. GO TO 2

3/17/2019

13

Learning Algorithm

�Weights, initially, are set randomly

�For each training example E

Calculate the observed output from the ANN, o(E)

If the target output t(E) is different from o(E)
Then tweak all the weights so that o(E) gets closer to t(E)

Tweaking is done by perceptron training rule

This routine is done for every example E

�Don’t necessarily stop when all examples used

Repeat the cycle again (an ‘epoch’) Until the ANN
produces the correct output for “all “ the
examples in the training set (or good enough)

Perceptron training alg.
∆ wi = c (d - sign((Σxi wi)) xi

Where c is the learning rate, d is the desired output and
sign(Σxi wi) is the actual output

If the desired output and actual output are equal, do nothing

If the actual value is -1 and should be 1, increment the
weights on the ith line by “2c xi “

If the actual value is 1 and should be -1, decrement the
weights on the ith line by “2c xi “

i.e. We can think of the addition of ∆wi as the movement of the

weight in a direction Which will improve the networks performance

with respect to the example. Multiplication by xi, Moves it more if the

input is bigger

3/17/2019

14

The Learning Rate

∆ wi = c (d - sign((Σxi wi)) xi

� c (in some books η) is called the learning rate, Usually
set to something small (e.g., 0.1), d is the desired output

� To control the movement of the weights Not to move too
far for one example Which may over-compensate for
another example

� If a large movement is actually necessary for the weights
to correctly categorise the example

This will occur over time with multiple epochs

