
Multi-layer Networks

- Have one or more
layers of hidden units.

-
layer are called
perceptrons

- With two possibly
very large hidden
layers, it is possible possible
to implement any to implement any
functionfunction.

perceptrons

-
limited in what they can
represent, but this makes
their learning problem
much simpler.

and PerceptronsPerceptrons

- Networks without hidden
layer are called
perceptrons.perceptrons.

- Perceptrons are very
limited in what they can
represent, but this makes
their learning problem
much simpler.

- First studied in the late 1950s.

- Also known as Layered Feed-Forward Networks.

- The only efficient learning element at that time was
for single-layered networks.

Perceptron

for single-layered networks.

- Today, used as a synonym for a single
feed-forward network.

First studied in the late 1950s.

Forward Networks.

The only efficient learning element at that time was

Perceptron

Today, used as a synonym for a single-layer,

Perceptron (artificial neuron)

x a

inputs weights

x b

+

(artificial neuron)

output

threshold

3

>10?

Example of Training

Inputs and outputs are 0 (no) or 1 (yes)

Initially, weights are random

Provide training inputProvide training input

Compare output of neural network to desired
output

If same, reinforce patterns

If different, adjust weights

Example of Training

Inputs and outputs are 0 (no) or 1 (yes)

Initially, weights are random

Provide training input

4

Provide training input

Compare output of neural network to desired

If same, reinforce patterns

If different, adjust weights

Example

If both inputs are 1, output

x 2

inputs weights

x 2

x 3

output should be 1.

threshold

5

+ >10?

output

threshold

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

, output should be 1.

threshold

6

+ >10?

output

threshold

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

2

3

, output should be 1.

threshold

7

+ >10?

output

threshold

Example

If both inputs are 1, output should be 1.

x 2

inputs weights

1 x 2

x 3

1

1

2

3

If both inputs are 1, output should be 1.

threshold

8

+ >10?

output

threshold

5

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

2

3

, output should be 1.

threshold

9

+ >10?

output

threshold

5
0

Example

If both inputs are 1, output should be 1.

x 2

inputs weights

1 x 2

x 3

1

1

2

3

If both inputs are 1, output should be 1.

threshold

10

+ >10?

output

threshold

5
0

Example

If both inputs are 1, output should be 1.

x 2

inputs weights

1 x 2

x 3

1

1

2

3

If both inputs are 1, output should be 1.

threshold

11

+ >10?

output

threshold

5
0

Example

If both inputs are 1, output should be

x 2

inputs weights

1 x 2

x 3

1

1

Repeat for all inputs until weights stop changing.

, output should be 1.

threshold

12

+ >10?

output

threshold

Repeat for all inputs until weights stop changing.

Computations

Consider the perceptron

Multiple input nodes

Single output node

Takes a weighted sum of the inputs, call this S

Unit function calculates the output for the networkUnit function calculates the output for the network

if Σw

if Σw

θ

x
1

x
n

x
2

. . .

w
1

w
2

w
n

Computations

perceptron:

Takes a weighted sum of the inputs, call this S

Unit function calculates the output for the network

13

Unit function calculates the output for the network

wixi >= θθθθ, output = 1

wixi < θθθθ, output = 0

Computation via activation

function
can view an artificial neuron as a computational
element accepts or classifies
output fires

INPUT: x1

.75*1 + .75*1 = 1.5 >= 1

INPUT: x1
1 INPUT: x1

.75*1 + .75*0 = .75 < 1

INPUT: x1

.75*0 + .75*1 = .75 < 1

INPUT: x1

.75*0 + .75*0 = 0 < 1

1

x
1

x
2

.75 .75

this neuron

Computation via activation

function
can view an artificial neuron as a computational

classifies an input if the

1 = 1, x2 = 1

.75*1 + .75*1 = 1.5 >= 1 � OUTPUT: 1

1 = 1, x2 = 0

14

1 = 1, x2 = 0

.75*1 + .75*0 = .75 < 1 � OUTPUT: 0

1 = 0, x2 = 1

.75*0 + .75*1 = .75 < 1 � OUTPUT: 0

1 = 0, x2 = 0

.75*0 + .75*0 = 0 < 1 � OUTPUT: 0

this neuron computes the AND function

Exercise

specify weights and thresholds to compute OR

INPUT: x1 =

w1*1 + w

INPUT: x1 =
θ

w1*1 + w

INPUT: x1 =

w1*0 + w

INPUT: x1 =

w1*0 + w

θ

x
1

x
2

w
1

w
2

Exercise

specify weights and thresholds to compute OR

= 1, x2 = 1

+ w2*1 >= θθθθ � OUTPUT: 1

= 1, x2 = 0

15

+ w2*0 >= θθθθ � OUTPUT: 1

= 0, x2 = 1

+ w2*1 >= θθθθ � OUTPUT: 1

= 0, x2 = 0

+ w2*0 < θθθθ � OUTPUT: 0

Another exercise?

specify weights and thresholds to compute XOR

INPUT: x1 = 1, x

w1*1 + w

INPUT: x1 = 1, x
θ

w1*1 + w

INPUT: x1 = 0, x

w1*0 + w

INPUT: x1 = 0, x

w1*0 + w

θ

x
1

x
2

w
1

w
2

we'll come back to this later…

Another exercise?

specify weights and thresholds to compute XOR

= 1, x2 = 1

*1 + w2*1 >= θθθθ � OUTPUT: 0

= 1, x2 = 0

16

*1 + w2*0 >= θθθθ � OUTPUT: 1

= 0, x2 = 1

*0 + w2*1 >= θθθθ � OUTPUT: 1

= 0, x2 = 0

*0 + w2*0 < θθθθ � OUTPUT: 0

we'll come back to this later…

Normalizing thresholds

to make life more uniform, can normalize the
threshold to 0

simply add an additional input x

θ

x
1

x
n

x
2

. . .

w
1

w
2

w
n

advantage: threshold = 0 for all neurons

Σwixi >= θθθθ ≡≡≡≡

Normalizing thresholds

to make life more uniform, can normalize the

simply add an additional input x0 = 1, w0 = -θ

0

17

-θθθθ*1 + Σwixi >= 0

x
1

x
n

x
2

. . .

w
1

w
2

w
n

1

−θ

Normalized examples

INPUT: x

INPUT: x

INPUT: x

INPUT: x

0

.75
.75-1

AND

x
1

x
2

1

INPUT: x

INPUT: x

INPUT: x

INPUT: x

0

x
1

x
2

.75
.75-.5

1

OR

Normalized examples

INPUT: x1 = 1, x2 = 1

1*-1 + .75*1 + .75*1 = .5 >= 0 � OUTPUT: 1

INPUT: x1 = 1, x2 = 0

1*-1 +.75*1 + .75*0 = -.25 < 1 � OUTPUT: 0

INPUT: x1 = 0, x2 = 1

1*-1 +.75*0 + .75*1 = -.25 < 1 � OUTPUT: 0

INPUT: x1 = 0, x2 = 0

1*-1 +.75*0 + .75*0 = -1 < 1 � OUTPUT: 0

18

1*-1 +.75*0 + .75*0 = -1 < 1 � OUTPUT: 0

INPUT: x1 = 1, x2 = 1

1*-.5 + .75*1 + .75*1 = 1 >= 0 � OUTPUT: 1

INPUT: x1 = 1, x2 = 0

1*-.5 +.75*1 + .75*0 = .25 > 1 � OUTPUT: 1

INPUT: x1 = 0, x2 = 1

1*-.5 +.75*0 + .75*1 = .25 < 1 � OUTPUT: 1

INPUT: x1 = 0, x2 = 0

1*-.5 +.75*0 + .75*0 = -.5 < 1 � OUTPUT: 0

Perceptrons

Rosenblatt (1958) devised a learning algorithm for artificial
neurons

start with a training set (example inputs & corresponding
desired outputs)

train the network to recognize the examples in the training set
(by adjusting the weights on the connections)

once trained, the network can be applied to new examples
Perceptron learning algorithm:

1. Set the weights on the connections with random values.

2. Iterate through the training set, comparing the output of the network with the
desired output for each example.

3. If all the examples were handled correctly, then DONE.

4. Otherwise, update the weights for each incorrect example:

• if should have fired on x1, …,xn
• if shouldn't have fired on x1, …,x

5. GO TO 2

Perceptrons

Rosenblatt (1958) devised a learning algorithm for artificial

start with a training set (example inputs & corresponding

train the network to recognize the examples in the training set
(by adjusting the weights on the connections)

19

once trained, the network can be applied to new examples

Set the weights on the connections with random values.

Iterate through the training set, comparing the output of the network with the

If all the examples were handled correctly, then DONE.

Otherwise, update the weights for each incorrect example:

but didn't, wi += xi (0 <= i <= n)

xn but did, wi -= xi (0 <= i <= n)

Example: perceptron

Suppose we want to train a
compute AND

training set:

0 randomly, let: w = -0.90

1 x
2

x
1

-0.9
0.6

0.2

randomly, let: w0 = -0.9

using these weights:
x1 = 1, x2 = 1: -0.9*1 +
x1 = 1, x2 = 0: -0.9*1 +
x1 = 0, x2 = 1: -0.9*1 +
x1 = 0, x2 = 0: -0.9*1 +

new weights: w0 = -0.9 + 1 = 0.1
w1 = 0.6 + 1 = 1.6
w2 = 0.2 + 1 = 1.2

perceptron learning

Suppose we want to train a perceptron to

training set: x1 = 1, x2 = 1 � 1

x1 = 1, x2 = 0 � 0
x1 = 0, x2 = 1 � 0
x1 = 0, x2 = 0 � 0

9, w = 0.6, w = 0.2

20

9, w1 = 0.6, w2 = 0.2

+ 0.6*1 + 0.2*1 = -0.1 � 0 WRONG
+ 0.6*1 + 0.2*0 = -0.3 � 0 OK
+ 0.6*0 + 0.2*1 = -0.7 � 0 OK
+ 0.6*0 + 0.2*0 = -0.9 � 0 OK

0.9 + 1 = 0.1
= 0.6 + 1 = 1.6
= 0.2 + 1 = 1.2

Example: perceptron

0

1 x
2

x
1

0.1
1.6

1.2

using these updated weights:
x1 = 1, x2 = 1: 0.1*1 +
x1 = 1, x2 = 0: 0.1*1 +
x1 = 0, x2 = 1: 0.1*1 +
x1 = 0, x2 = 0: 0.1*1 +

new weights: w0 = 0.1
w1 = 1.6
w2 = 1.2 21 w2 = 1.2

0

1 x
2

x
1

-2.9
0.6

0.2

using these updated weights:
x1 = 1, x2 = 1: -2.9*1 + 0.6*1 + 0.2*1
x1 = 1, x2 = 0: -2.9*1 + 0.6*1 + 0.2*0
x1 = 0, x2 = 1: -2.9*1 + 0.6*0 + 0.2*1
x1 = 0, x2 = 0: -2.9*1 + 0.6*0 + 0.2*0

new weights: w0 = -2.9 + 1 =
w1 = 0.6 + 1 = 1.6
w2 = 0.2 + 1 = 1.2

perceptron learning

using these updated weights:
+ 1.6*1 + 1.2*1 = 2.9 � 1 OK
+ 1.6*1 + 1.2*0 = 1.7 � 1 WRONG
+ 1.6*0 + 1.2*1 = 1.3 � 1 WRONG
+ 1.6*0 + 1.2*0 = 0.1 � 1 WRONG

1 - 1 - 1 - 1 = -2.9
6 - 1 - 0 - 0 = 0.6
2 - 0 - 1 - 0 = 0.2

21

2 - 0 - 1 - 0 = 0.2

using these updated weights:
2.9*1 + 0.6*1 + 0.2*1 = -2.1 � 0 WRONG
2.9*1 + 0.6*1 + 0.2*0 = -2.3 � 0 OK
2.9*1 + 0.6*0 + 0.2*1 = -2.7 � 0 OK
2.9*1 + 0.6*0 + 0.2*0 = -2.9 � 0 OK

2.9 + 1 = -1.9
= 0.6 + 1 = 1.6
= 0.2 + 1 = 1.2

Example: perceptron

0

-1.9
1.6

1.2

using these updated weights:
x1 = 1, x2 = 1: -1.9*1 + 1.6*1 + 1.2*1
x1 = 1, x2 = 0: -1.9*1 + 1.6*1 + 1.2*0
x1 = 0, x2 = 1: -1.9*1 + 1.6*0 + 1.2*1
x1 = 0, x2 = 0: -1.9*1 + 1.6*0 + 1.2*0

DONE!

1 x
2

x
1

DONE!

EXERCISE: train a perceptron to compute OR

perceptron learning

using these updated weights:
1.9*1 + 1.6*1 + 1.2*1 = 0.9 � 1 OK
1.9*1 + 1.6*1 + 1.2*0 = -0.3 � 0 OK
1.9*1 + 1.6*0 + 1.2*1 = -0.7 � 0 OK
1.9*1 + 1.6*0 + 1.2*0 = -1.9 � 0 OK

22

