### Entropy – General Idea

#### Definition:

"In order to define information gain precisely, we begin by defining a measure commonly used in information theory, called entropy that characterizes the (im)purity of an arbitrary collection of examples"

Given a set of examples, S. And a binary categorisation Where  $p_{+}$  is the proportion of positive "examples" And  $p_{-}$  is the proportion of negatives

$$Entropy(S) = -p_{+} \log_{2}(p_{+}) - p_{-} \log_{2}(p_{-})$$

### Entropy – General Idea

> Entropy as a measure of Information

Ex. The information content of a message telling the outcome of flipping an honest coin is

$$I(Coin Toss) = -p(heads) \log_2 p(heads) - p(tails) \log_2 p(tails)$$
$$= -1/2 \log_2(1/2) - 1/2 \log_2(1/2)$$
$$= 1 \text{ bit}$$

If the coin has been rigged to come up heads 75% of the time, the information content will be less or more ?!

### Entropy – General Idea

> Entropy as a measure of Information

Ex. The information content of a message telling the outcome of flipping an honest coin is

 $I(Coin Toss) = -p(heads) \log_2 p(heads) - p(tails) \log_2 p(tails)$  $= -1/2 \log_2(1/2) - 1/2 \log_2(1/2)$ = 1 bit

If the coin has been rigged to come up heads 75% of the time, the information content will be less or more ?!

I[Coin Toss] =  $-3/4 \log_2(3/4) - 1/4 \log_2(1/4)$ = 0.811 bits

Remark: Note for users of old calculators: May need to use the fact that  $log_2(x) = ln(x)/ln(2)$ 

And also note that, by convention: 0\*log<sub>2</sub>(0) is taken to be 0

### Entropy - General Idea

• In categorisations c<sub>1</sub> to c<sub>n</sub>

Where  $\boldsymbol{p}_{\boldsymbol{n}}$  is the proportion of examples in  $\boldsymbol{c}_{\boldsymbol{n}}$ 

$$Entropy(S) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

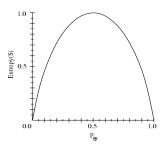
 $\boldsymbol{p}_{i}$  is the probability of class  $\boldsymbol{i}$ 

Computes the entropy as the proportion of class i in the set.

The higher the entropy the more the information content.

### Entropy – General Idea

### **Entropy**



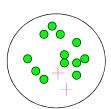
 $\bullet$  S is a sample of training examples

Entropy(S) positives p+ approaches 0.5 (very impure), the Entropy of S converges to 1.0

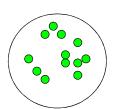
### Entropy – General Idea Impurity

#### **Very impure group**

#### Less impure



### Minimum impurity



6

# Entropy – General Idea Impurity

- What is the entropy of a group in which all examples belong to the same class?
  - entropy = 1  $log_2 1 = 0$
  - not a good training set for learning



7

# Entropy – General Idea Impurity

- What is the entropy of a group in which all examples belong to the same class?
  - $entropy = -1 log_2 1 = 0$
  - not a good training set for learning
- What is the entropy of a group with 50% in either class?
  - entropy =  $-0.5 \log_2 0.5 0.5 \log_2 0.5 = 1$ good training set for learning





Maximum impurity



8

### Information Gain

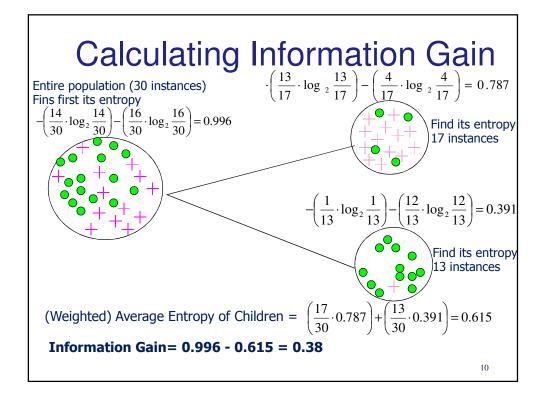
We want to determine which attribute in a given set of training feature vectors is most useful for discriminating between the classes to be learned.

i.e.

Information gain tells us how important a given attribute of the feature vectors is.

We will use it to decide the order of attributes in the nodes of a decision tree.

9



### Credit Risk Example

Let us consider our credit risk data. There are three feature values in 14 classes.

6 classes have high risk, 3 have moderate risk, 5 have low risk. Assuming *uniform* distribution, their probabilities are as follows:

| NO | Э.   | RISK     | CREDIT<br>HISTORY | DEBT | COLLATERAL | INCOME        | high                                     | $\frac{6}{14}$ , moderate $\frac{3}{14}$ , low $\frac{5}{14}$ |
|----|------|----------|-------------------|------|------------|---------------|------------------------------------------|---------------------------------------------------------------|
| 1  | 1. ŀ | nigh     | bad               | high | none       | \$0 to \$15k  | . 3                                      | 14' 14 14                                                     |
| 2  | 2. h | nigh     | unknown           | high | none       | \$15 to \$35k |                                          |                                                               |
| 3  | 3. r | noderate | unknown           | low  | none       | \$15 to \$35k |                                          |                                                               |
| 4  | 4. I | nigh     | unknown           | low  | none       | \$0 to \$15k  | Information contained in this partition: |                                                               |
| 5  | 5. 1 | ow       | unknown           | low  | none       | over \$35k    |                                          |                                                               |
| 6  | 6. 1 | ow       | unknown           | low  | adequate   | over \$35k    | Info/S                                   | $V = -(6/14) \log_2(6/14)$ -                                  |
| 7  | 7. l | nigh     | bad               | low  | none       | \$0 to \$15k  |                                          | y = (6/11) 10g <sub>2</sub> (6/11)                            |
| 8  | 8. r | noderate | bad               | low  | adequate   | over \$35k    | (3/14)                                   | log <sub>2</sub> (3/14) - (5/14)log <sub>2</sub> (5/14)       |
| 9  | 9. 1 | ow       | good              | low  | none       | over \$35k    | (0, 1 1)                                 | (6, 1.1)                                                      |
| 10 | 0. 1 | ow       | good              | high | adequate   | over \$35k    | ≈ 1.5                                    | 31 bits                                                       |
| 11 | 1. E | nigh     | good              | high | none       | \$0 to \$15k  |                                          |                                                               |
| 12 | 2. r | noderate | good              | high | none       | \$15 to \$35k |                                          |                                                               |
| 13 | 3. 1 | ow       | good              | high | none       | over \$35k    |                                          |                                                               |
| 14 | 4. ł | nigh     | bad               | high | none       | \$15 to \$35k |                                          |                                                               |

## Expected Info.

Let property A(Income) be at the root, and let  $C_1$ , ...,  $C_n$  be the partitions of the examples on this feature.

Information needed to build a tree for partition  $C_i$  is  $I(C_i)$ .

Expected information needed to build the whole tree is a *weighted average* of  $(C_i)$ .

Let |S| be the cardinality of set S.

Let {C<sub>i</sub>} be the set of all partitions.

Expected information needed to complete the tree with root A  $\frac{n}{2}$   $\frac{1}{2}$  C  $\frac{1}{2}$ 

with root A
$$Info_A(S) = \sum_{i=1}^n \frac{|C_i|}{|S|} \times I(C_i)$$

### Expected Info.

In our data, there are three partitions based on income:

All examples have high risk:

$$I(C_1) = -1 \log_2 1 = 0.0.$$

$$C_1 = \{1, 4, 7, 11\}, |C_1| = 4, I(C_1) = 0.0$$

Two examples have high risk, two have moderate:

$$I(C_2) = -1/2 \log_2 1/2 - 1/2 \log_2 1/2 = 1.0.$$

$$C_2 = \{2, 3, 12, 14\}, |C_2| = 4, |C_2| = 1.0$$

$$I(C_3) = -1/6 \log_2 1/6 - 5/6 \log_2 5/6 \approx 0.65.$$

$$C_3 = \{5, 6, 8, 9, 10, 13\}, |C_3| = 6, I(C_3) \approx 0.65$$

The expected information to complete the tree using income as the root feature is this:

$$4/14 * 0.0 + 4/14 * 1.0 + 6/14 * 0.65 \approx 0.564$$
 bits

i.e. 
$$Info_A(S) = 0.564$$

### The gain of a property A

Now the information gain from selecting feature P for tree-building, given a set of classes C.

$$Gain(A) = Info(S) - Info_{A}(S)$$

For our sample data and for P = income, we get Gain(A) = 1.531 - 0.564 bits = 0.967 bits.

### The gain of a property A

Our analysis will be complete, and our choice clear, after we have similarly considered the remaining three features. The values are as follows:

*Gain*(COLLATERAL) ≈ 0.756 bits,

Gain(DEBT) ≈ 0.581 bits,

Gain(CREDIT HISTORY) ≈ 0.266 bits.

That is, we should choose INCOME as the criterion in the root of the best decision tree that we can construct. And continue recursively...

