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Entropy – General Idea 
Definition:

“In order to define information gain precisely, we begin by 
defining a measure commonly used in information theory, 

called entropy that characterizes the (im)purity of an arbitrary 
collection of examples”

Given a set of examples, S. And a binary categorisation

Where p+ is the proportion of positive “examples”

And p- is the proportion of negatives
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Entropy – General Idea 
� Entropy as a measure of Information

Ex. The information content of a message telling the outcome of 
flipping an honest coin is

I(Coin Toss) = -p(heads) log2 p(heads) - p(tails) log2 p(tails)

= - 1/2 log2(1/2) - 1/2 log2(1/2)

= 1 bit

If the coin has been rigged to come up heads 75% of the time, the 
information content will be less or more ?!
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Entropy – General Idea 
� Entropy as a measure of Information

Ex. The information content of a message telling the outcome of 
flipping an honest coin is

I(Coin Toss) = -p(heads) log2 p(heads) - p(tails) log2 p(tails)

= - 1/2 log2(1/2) - 1/2 log2(1/2)

= 1 bit

If the coin has been rigged to come up heads 75% of the time, the 
information content will be less or more ?!

I[Coin Toss] = - 3/4 log2(3/4) - 1/4 log2(1/4)

= 0.811 bits

Remark: Note for users of old calculators:

May need to use the fact that log2(x) = ln(x)/ln(2)

And also note that, by convention: 0*log2(0) is taken to be 0

Entropy – General Idea 
� In categorisations c1 to cn

Where pn is the proportion of examples in cn

pi is the probability of class i

Computes the entropy as the proportion of class i in the set.

The higher the entropy the more the information content.
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Entropy – General Idea 

Entropy(S)
positives p+ approaches 0.5 (very impure), the 
Entropy of S converges to 1.0
1.0 0.5 0.0 0.5 p+ 1.0

Entropy(S)
positives p+ approaches 0.5 (very impure), 
the Entropy of S converges to 1.0
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Entropy – General Idea 
Impurity

Very impure group Less impure Minimum 
impurity
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Entropy – General Idea 
Impurity

• What is the entropy of a group in which all 
examples belong to the same class?
– entropy = - 1 log21 = 0

– not a good training set for learning

Minimum 
impurity

8

Entropy – General Idea 
Impurity

• What is the entropy of a group in which all 
examples belong to the same class?
– entropy = - 1 log21 = 0

– not a good training set for learning

• What is the entropy of a group with 50% in 
either class?
– entropy = -0.5  log20.5 – 0.5  log20.5 =1

Minimum 
impurity

Maximum
impurity

good training set for learning
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Information Gain

We want to determine which attribute in a given 
set of training feature vectors is most useful
for discriminating between the classes to be 
learned.

i.e.

Information gain tells us how important a given 
attribute of the feature vectors is.

We will use it to decide the order of attributes in 
the nodes of a decision tree.
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(Weighted) Average Entropy of Children = 615.0391.0
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Calculating Information Gain
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Let us consider our credit risk data. There are three 
feature values in 14 classes.

6 classes have high risk, 3 have moderate risk, 5 

have low risk. Assuming uniform distribution, 
their probabilities are as follows:

Information contained in this partition:

Info(S) = -(6/14) log2 (6/14)  -

(3/14) log2 (3/14) - (5/14)log2 (5/14) 

≈ 1.531 bits

  

3

14   

5

14  

6

14
high    , moderate      ,low

Credit Risk Example

Let property A(Income) be at the root, and let C1, 
..., Cn be the partitions of the examples on this 

feature.

Information needed to build a tree for partition Ci

is I(Ci).

Expected information needed to build the whole 
tree is a weighted average of I(Ci).

Let |S| be the cardinality of set S.

Let {Ci} be the set of all partitions.

Expected information needed to complete the tree 

with root A

Expected Info.
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In our data, there are three partitions based on income:

All examples have high risk: 

I(C1) = -1 log2 1 = 0.0.

C1 = {1, 4, 7, 11}, |C1| = 4, I(C1) = 0.0

Two examples have high risk, two have moderate:

I(C2) = - 1/2  log2 1/2  - 1/2  log2 1/2 = 1.0.

C2 = {2, 3, 12, 14}, |C2| = 4, I(C2) = 1.0

I(C3) = - 1/6  log2 1/6  - 5/6  log2 5/6 ≈ 0.65.

C3 = {5, 6, 8, 9, 10, 13}, |C3| = 6, I(C3) ≈ 0.65

The expected information to complete the tree using 
income as the root feature is this:

4/14  * 0.0 + 4/14  * 1.0 + 6/14  * 0.65 ≈ 0.564 bits

i.e. InfoA (S)= 0.564

Expected Info.

Now  the information gain from selecting feature P 
for tree-building, given a set of classes C.

For our sample data and for P = income, we get 

Gain(A)= 1.531 - 0.564 bits = 0.967 bits.

The gain of a property A

(S)InfoInfo(S)Gain(A) A−=



2/16/2018

8

Our analysis will be complete, and our choice 
clear, after we have similarly considered the 
remaining three features. The values are as 
follows:

Gain(COLLATERAL) ≈ 0.756 bits,

Gain(DEBT) ≈ 0.581 bits,

Gain(CREDIT HISTORY) ≈ 0.266 bits.

That is, we should choose INCOME as the 
criterion in the root of the best decision tree that 
we can construct. And continue recursively…

The gain of a property A

Recursively Creating the Decision 
Tree


