Entropy — General Idea

Definition:

“In order to define information gain precisely, we begin by
defining a measure commonly used in information theory,
called entropy that characterizes the (im)purity of an arbitrary
collection of examples”

Given a set of examples, S. And a binary categorisation
Where p, is the proportion of positive “examples”
And p. is the proportion of negatives

Entropy(S)=—-p,log,(p,)—p_log,(p_)

Entropy — General Idea
> Entropy as a measure of Information

Ex. The information content of a message telling the outcome of
flipping an honest coin is

I(Coin Toss) = -p(heads) log, p(heads) - p(tails) log, p(tails)
= - 1/2 logy(1/2) - 1/2 log,y(1/2)
= 1 bit
If the coin has been rigged to come up heads 75% of the time, the
information content will be less or more ?!




Entropy — General Idea

» Entropy as a measure of Information

Ex. The information content of a message telling the outcome of
flipping an honest coin is

I(Coin Toss) = -p(heads) log, p(heads) - p(tails) log, p(tails)
= - 1/210g5(1/2) - 1/2 logy(1/2)
= 1 bit
If the coin has been rigged to come up heads 75% of the time, the
information content will be less or more ?!
I[Coin Toss] = - 3/4 10g,(3/4) - 1/4 log,(1/4)
= (0.811 bits

Remark: Note for users of old calculators:
May need to use the fact that log,(x) = In(x)/In(2)
And also note that, by convention: 0*log,(0) is taken to be 0

Entropy — General Idea

e In categorisations c, to ¢,
Where p, is the proportion of examplesiin c,
Entropy(S) = _Z p;log,(p;)
p; is the probability of class i .
Computes the entropy as the proportion of class i in the set.
The higher the entropy the more the information content.




Entropy
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0.5 +

Entropy(S)

e S is a sample of training examples
Entropy(S)

positives p+ approaches 0.5 (very impure),
the Entropy of S converges to 1.0

Very impure group
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Impurity

Less impure

Minimum
impurity
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Impurity

* What is the entropy of a group in which all
examples belong to the same class?
— entropy = - 1 log,1 =0
— not a good training set for learning

Minimum
impurity
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Impurity

* What is the entropy of a group in which all
examples belong to the same class?
— entropy =- 1log,1 =0
— not a good training set for learning

Minimum
impurity

* What is the entropy of a group with 50% in
either class? ]
— entropy = -0.5 10g,0.5 - 0.5 l0og,0.5 =1 Maximum
good training set for learning impurity




Information Gain

We want to determine which attribute in a given
set of training feature vectors is most useful
for discriminating between the classes to be
learned.

e.

Information gain tells us how important a given
attribute of the feature vectors is.

We will use it to decide the order of attributes in
the nodes of a decision tree.

Calculating Information Gain

13 13 4 4
Entire population (30 instances) (— -log , —j —| —-log, —j =0.787
Fins first its entropy 17 17 17 17

16
—| —-1 — 1=0.996
( ( o8 3oj

Find its entropy
17 instances

(Weighted) Average Entropy of Children = (;(7)~0.787)+(13 ~0.391) =0.615

Information Gain= 0.996 - 0.615 = 0.38




Credit Risk Example

Let us consider our credit risk data. There are three
feature values in 14 classes.

6 classes have high risk, 3 have moderate risk, 5
have low risk. Assuming waformdistribution,
their probabilities are as follows:

RISK IILIE“I}ESQ;’ DEBT COLLATERAL INCOME 1 6 3 5
woom high  —, moderate - ,low_~
high bad high none S0t0 815k 14 14 14
high high none S15 10 835k
moderate low none $15t0 835k
e © " Information contained in this partition:

" menm e e Info(S)= -(6/14) log, (6/14) -

high bad S0t S15k

e s (3/14) logy (3/14) - (5/14)log, (5/14)
low good low none over $35k O 2 O 2

low good high adequate over $35k ~ 1531 blts

high good high none S0t0 815k

moderate  good high none $15 10 835k

low good high none over $35k

high bad high none $15 10 835k

Expected Info.

Let property A(Income) be at the root, and let C;,
..., G,, be the partitions of the examples on this
feature.

Information needed to build a tree for partition C;
is 1(C).

Expected information needed to build the whole
tree is a wefghted average of C)).

Let |S| be the cardinality of set S.

Let {C} be the set of all partitions.

Expected information needed to complete the tree
with root A

Info,(S) = Z%x 1(C)




Expected Info.

In our data, there are three partitions based on income:
All examples have high risk:

I(C,4) =-1log, 1 =0.0.

C,={1,4,7,11},|C4| =4, I(C,) = 0.0

Two examples have high risk, two have moderate:
I(C,) =-1/2 log, 1/2 - 1/2 log, 1/2 =1.0.
C,=1{2,3,12,14},|C,| =4, 1(C,) =1.0

I(C5) =-1/6 log, 1/6 - 5/6 log, 5/6 = 0.65.
C;=1{5,6,8,9,10, 13}, |C5| =6, I(C3) = 0.65

The expected information to complete the tree using
income as the root feature is this:

414 * 0.0 + 4/14 *1.0 + 6/14 * 0.65 = 0.564 bits
i.e. /1/0,(S)= 0.564

The gain of a property A
Now the information gain from selecting feature P
for tree-building, given a set of classes C.

Gain(A) = Info(S)— Info ,(S)

For our sample data and for P = income, we get
GamfA4)=1.531 - 0.564 bits = 0.967 bits.




The gain of a property A

Our analysis will be complete, and our choice
clear, after we have similarly considered the

remaining three features. The values are as
follows:

Ga{COLLATERAL) = 0.756 bits,
G2/ DEBT) = 0.581 bits,
Ga/{CREDIT HISTORY) = 0.266 bits.

That is, we should choose INCOME as the
criterion in the root of the best decision tree that
we can construct. And continue recursively...

Recursively Creating the Decision

income?
$0 to $15k $15 tol $35k over $35k
examples {1,4,7,11} examples {2, 3,12, 14} examples {5, 6, 8, 9, 10, 13}
income?
$0 to 15k $15 to $35k over $35k
credit history? examples {5, 6, 8, 9, 10, 13}
unknéwn bad  good

examples {2,3} examples {14} examples {12}




