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Entropy – General Idea 
Definition:

“In order to define information gain precisely, we begin by 

defining a measure commonly used in information theory, 
called entropy that characterizes the (im)purity of an arbitrary 
collection of examples”

Given a set of examples, S. And a binary categorisation

Where p+ is the proportion of positive “examples”

And p- is the proportion of negatives
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Entropy – General Idea 
� Entropy as a measure of Information

Ex. The information content of a message telling the outcome of 

flipping an honest coin is

I(Coin Toss) = -p(heads) log2 p(heads) - p(tails) log2 p(tails)

= - 1/2 log2(1/2) - 1/2 log2(1/2)

= 1 bit

If the coin has been rigged to come up heads 75% of the time, the 
information content will be less or more ?!

Entropy – General Idea 
� Entropy as a measure of Information

Ex. The information content of a message telling the outcome of 

flipping an honest coin is

I(Coin Toss) = -p(heads) log2 p(heads) - p(tails) log2 p(tails)

= - 1/2 log2(1/2) - 1/2 log2(1/2)

= 1 bit

If the coin has been rigged to come up heads 75% of the time, the 
information content will be less or more ?!

I[Coin Toss] = - 3/4 log2(3/4) - 1/4 log2(1/4)

= 0.811 bits

Remark: Note for users of old calculators:

May need to use the fact that log2(x) = ln(x)/ln(2)

And also note that, by convention: 0*log2(0) is taken to be 0

Entropy – General Idea 
� In categorisations c1 to cn

Where pn is the proportion of examples in cn

pi is the probability of class i

Computes the entropy as the proportion of class i in the set.

The higher the entropy the more the information content.
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Entropy – General Idea 

Entropy(S)
positives p+ approaches 0.5 (very impure), the 
Entropy of S converges to 1.0
1.0 0.5 0.0 0.5 p+ 1.0

Entropy(S)
positives p+ approaches 0.5 (very impure), 
the Entropy of S converges to 1.0
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Entropy – General Idea 
Impurity

Very impure group Less impure Minimum 
impurity
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Entropy – General Idea 
Impurity

• What is the entropy of a group in which all 
examples belong to the same class?
– entropy = - 1 log21 = 0

– not a good training set for learning

Minimum 
impurity
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Entropy – General Idea 
Impurity

• What is the entropy of a group in which all 
examples belong to the same class?
– entropy = - 1 log21 = 0

– not a good training set for learning

• What is the entropy of a group with 50% in 
either class?
– entropy = -0.5  log20.5 – 0.5  log20.5 =1

Minimum 
impurity

Maximum
impurity

good training set for learning
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Information Gain

We want to determine which attribute in a given 
set of training feature vectors is most useful
for discriminating between the classes to be 
learned.

i.e.

Information gain tells us how important a given 
attribute of the feature vectors is.

We will use it to decide the order of attributes in 
the nodes of a decision tree.
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Calculating Information Gain

�The information gain is based on the decrease in entropy after a 

dataset is split on an attribute.

�Which attribute creates the most homogeneous branches?

�First the entropy of the total dataset is calculated.

�The dataset is then split on the different attributes.

�The entropy for each branch is calculated. Then it is added 
proportionally, to get total entropy for the split. 

�The resulting entropy is subtracted from the entropy before the split.

�The result is the Information Gain, or decrease in entropy.

�The attribute that yields the largest IG is chosen for the 

decision node.

Calculating Information Gain

Given a set of examples S and an attribute A

�Let pi be the probability that an arbitrary leaf in S belongs to 
class Ci, estimated by |Ci|/|S|

�Information needed (after using A to split S into v partitions) to 
classify S:

�Expected information (entropy) needed to classify a leaf in S:

�Information gained by branching on attribute A

�The information is measured in bits.
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Calculating Information Gain
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Let us consider our credit risk data. There are three 

feature values in 14 classes.

6 classes have high risk, 3 have moderate risk, 5 
have low risk. Assuming uniform distribution, 
their probabilities are as follows:

Information contained in this partition:

Info(S) = -(6/14) log2 (6/14)  -

(3/14) log2 (3/14) - (5/14)log2 (5/14) 

≈ 1.531 bits
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Credit Risk Example

Let property A(Income) be at the root, and let C1, 

..., Cn be the partitions of the examples on this 
feature.

Information needed to build a tree for partition Ci

is I(Ci).

Expected information needed to build the whole 
tree is a weighted average of I(Ci).

Let |S| be the cardinality of set S.

Let {Ci} be the set of all partitions.

Expected information needed to complete the tree 
with root A

Expected Info.
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In our data, there are three partitions based on income:

All examples have high risk:

I(C1) = -1 log2 1 = 0.0.

C1 = {1, 4, 7, 11}, |C1| = 4, I(C1) = 0.0

Two examples have high risk, two have moderate:

I(C2) = - 1/2  log2 1/2  - 1/2  log2 1/2 = 1.0.

C2 = {2, 3, 12, 14}, |C2| = 4, I(C2) = 1.0

I(C3) = - 1/6  log2 1/6  - 5/6  log2 5/6 ≈ 0.65.

C3 = {5, 6, 8, 9, 10, 13}, |C3| = 6, I(C3) ≈ 0.65

The expected information to complete the tree using 
income as the root feature is this:

4/14  * 0.0 + 4/14  * 1.0 + 6/14  * 0.65 ≈ 0.564 bits

i.e. InfoA (S)= 0.564

Expected Info.
Now  the information gain from selecting feature P 

for tree-building, given a set of classes C.

For our sample data and for P = income, we get 

Gain(A)= 1.531 - 0.564 bits = 0.967 bits.

The gain of a property A

(S)InfoInfo(S)Gain(A) A−=

Our analysis will be complete, and our choice 

clear, after we have similarly considered the 
remaining three features. The values are as 
follows:

Gain(COLLATERAL) ≈ 0.756 bits,

Gain(DEBT) ≈ 0.581 bits,

Gain(CREDIT HISTORY) ≈ 0.266 bits.

That is, we should choose INCOME as the 

criterion in the root of the best decision tree that 
we can construct. And continue recursively…

The gain of a property A
Recursively Creating the Decision 

Tree
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The ID3 Algorithm
Given a set of examples, S

Described by a set of attributes Ai

Categorised into categories cj

1. Choose the root node to be attribute A

Such that A scores highest for information gain 

Relative to S, i.e., gain(S,A) is the highest over all 
attributes

2. For each value v that A can take

Draw a branch and label each with corresponding v

The ID3 Algorithm

For each branch you’ve just drawn (for value v)

If Sv only contains examples in category c

Then put that category as a leaf node in the tree

Remove A from attributes which can be put into nodes

Replace S with Sv

Find new attribute A scoring best for Gain(S, A) 

Start again at part 2 

Remark: This is a greedy algorithm: (a form of hill climbing.)

Overfitting the DT

The depth of the tree is related to the generalization capability 
of the tree. If not carefully chosen it may lead to overfitting. 

A tree overfits the data if we let it grow deep enough so that it 
begins to capture “adeviation” in the data that harm the 
predictive power on unseen examples; 

Recall 

Overfitting the DT

There are two main solutions to overfitting in a decision tree:

1) Stop the tree early before it begins to overfit the data

� In practice this solution is hard to implement because it is not 
clear what is a stopping point.

2) Grow the tree until the algorithm stops even if the overfitting
problem shows ,Then prune the tree.

� This method has found great popularity in the machine 
learning community

Decision Tree Pruning 

common decision tree pruning algorithm depends 

on :

1- Considering all internal nodes in the tree

2- For each node, check if removing it (along with 

the subtree) and assigning most common class 

to it does not harm the accuracy of the data.

Practical issues in DT

Practical issues while building a decision tree: 

1) Choosing a node (using the info gain concept) 

2) How deep should the tree be? 

3) How do we handle continuous attributes (So far we 
discussed only discrete)? 

4) What happens when attribute values are missing? 

5) How do we improve the computational efficiency 
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Advantages of using ID3

� Understandable prediction rules are created from the 
training data.

� Builds the fastest tree.

� Builds a short tree.

� Only need to test enough attributes until all data is 
classified.

� Finding leaf nodes enables test data to be pruned, 

reducing number of tests.

�Whole dataset is searched to create tree.

Disadvantages of using ID3

�Data may be over-fitted or over-classified, if a small 
sample is tested.

�Only one attribute at a time is tested for making a 
decision.

�Classifying continuous data may be computationally 
expensive, as many trees must be generated to see 
where to break the continuum. 


