First-order logic
« First-order logic (FOL) models the world in terms of
- Objects, which are things with individual identities
- Properties of objects that distinguish them from other objects
- Relations that hold among sets of objects

- Functions, which are a subset of relations where there is only
one “value” for any given “input”

EX: Objects: Students, lectures, companies, cars ...

- Relations: Brother-of, bigger-than, outside, part-of, has-color,
occurs-after, owns, visits, precedes, ...

- Properties: blue, oval, even, large, ...

- Functions: father-of, best-friend, second-half, one-more-than

Sentence > Atomicsentence

| (Sentence Connective Sentence)

| Quantifier Variable,. . . Sentence

| Sentence
AtomicSentence - Predicate(Term, . . .)

| (Term= Term
Term--> Function(Term, . . .)
| Constant
| Variable

Connective > =, A, v,=
Quantifier > v, 3
Constant > A(XI(John1 ...
Variable > a|x|s]|...
Predicate > Before...
Function > Mother]| ...

Truth in first-order logic

Sentences are true with respect to a model and an
interpretation

Model contains objects (domain elements) and relations
among them

Interpretation specifies referents for

constant symbols — objects
predicate symbols — relations
function symbols — functional relations

An atomic sentence predicate(term,,...,term,) is true
iff the objects referred to by term,,...,term,
are in the relation referred to by predicate

Entailment

¢ Entailment means that one thing follows from
another:
KB Fa
Knowledge base KB entails sentence a if and only if
ais true in all worlds where KB is true

- E.g., the KB containing “the Greens won” and “the Reds
won” entails “Either the Greens or the reds won*

- E.g., x+y = 4 entails 4 = x+y

— Entailment is a relationship between sentences (i.e.,
syntax) that is based on semantics

- entailment: necessary truth of one sentence given
another

Models

Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

We say mis a model of a sentence a if a is true in m
M(a) is the set of all models of a
Then KB F a iff M(KB) ¢ M(a)

- E.g. KB= Greens won and Reds
wogn a = Greens won MO0

Think of KB and a as collections of
constraints and of models m as
possible states. M(KB) are the solutions
to KB and M(a) the solutions to a.
Then, KB F a when all solutions to

KB are also solutions to a.

Inference

« KB |-i a = sentence a can be derived from KB by procedure i
i.e. deriving sentences from other sentences

« Soundness: iis sound if whenever KB |-iq, it is also true that
a

i.e. derivations produce only entailed sentences (no wrong
inferences, but maybe not all inferences)

« Completeness: i is complete if whenever KB |= a, itis also
true that KB fa

i.e. derivations can produce all entailed sentences (all
inferences can be made, but maybe some wrong extra
ones as well)

Validity and satisfiability

« Asentence is valid if it is true in all models,
e eg., True,Av—A, A=A, (AA(A=>B))=B

Validity is connected to inference via the following:
KB }:q if and only if (KB = q) is valid

A sentence is satisfiable if it is true in some model
eg.,AvB, C

A sentence is unsatisfiable if it is true in no models
e.g., AA-A

Satisfiability is connected to inference via the following:
KB k a if and only if (KB A—a) is unsatisfiable
(there is no model for which KB=true and is false)

Proof Methods in FOL

Three Major Families:
*Resolution

» Forward chaining

» Backward chaining

Some Other inference tools:

Entailment/ Unification/ GMP/
reduction

Inferencing in Predicate Calculus

* Resolution — Refutation
— Negate goal
— Convert all pieces of knowledge into clausal form (disjunction of literals)
— See if contradiction indicated by null clause [J can be derived
* Forward chaining
— GivenP, P — Q, to infer Q
— P, match L.H.S of
— Assert Q fromR.H.S
¢ Backward chaining
— Q,MatchRH.Sof P—>Q
— assert P
— Check if P exists

Universal instantiation (Ul)

< Every instantiation of a universally quantified sentence is
entailed by it:
_ vva
Subst({v/g}, a)
for any variable v and ground term g

* E.g., Vx King(x) A Greedy(x) = Evil(x) yields:

King(John) A Greedy(John) = Evil(John)

King(Richard) A Greedy(Richard) = Evil(Richard)
King(Father(John)) A Greedy(Father(John)) = Evil(Father(John))

Existential instantiation (El)

« For any sentence a, variable v, and constant symbol k that
does not appear elsewhere in the knowledge base:

Jva
Subst({v/k}, a)

« E.g.,3x Crown(x) A OnHead(x,John) yields:
Crown(C;) A OnHead(C,,John)

provided C; is a new constant symbol, called a Skolem
constant

Unification

+ We can get the inference immediately if we can find a substitution 6 such
that King(x) and Greedy(x) match King(John) and Greedy(y)

0 = {x/John,y/John} works

« Unify(a,) = 8if a8 = B0

p q | =8
Knows(John,x) | Knows(John,Jane)
Knows(John,x) | Knows(y,0J)
Knows(John,x) | Knows(y,Mother(y)
Knows(John,x) | Knows(x,0J)

« Standardizing apart eliminates overlap of variables, e.g., Knows(z;,,0J)

Unification
« Wecan get the inference immediately if we can find a substitution 8 such
that King(x) and Greedy(x) match King(John) and Greedy(y)
8 = {x/John,y/John} works

« Unify(a,) = 8 if a8 = BB
P q | e

Knows(John,x) | Knows(John,Jane) | {x/Jane}}
Knows(John,x) | Knows(y,0J)
Knows(John,x) | Knows(y,Mother(y)
Knows(John,x) | Knows(x,0J)

+ Standardizing apart eliminates overlap of variables, e.g., Knows(z,,0J)

Unification

« Wecan get the inference immediately if we can find a substitution 8 such
that King(x) and Greedy(x) match King(John) and Greedy(y)

8 = {x/John,y/John} works

« Unify(a,) = 8 if a8 = BB
P q | e

Knows(John,x) | Knows(John,Jane) | {x/Jane}}
Knows(John,x) | Knows(y,0J) {x/OJ,y/John}}
Knows(John,x) | Knows(y,Mother(y)
Knows(John,x) | Knows(x,0J)

Standardizing apart eliminates overlap of variables, e.g., Knows(z,,0J)

Unification

« Wecan get the inference immediately if we can find a substitution 8 such
that King(x) and Greedy(x) match King(John) and Greedy(y)

8 = {x/John,y/John} works

« Unify(a,) = 8 if a8 = B8
p a 0

| |
Knows(John,x) | Knows(John,Jane) | {x/Jane}}
Knows(John,x) | Knows(y,0J) {x/OJ,y/John}}
Knows(John,x) | Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) | Knows(x,0J) {fail}

+ Standardizing apart eliminates overlap of variables, e.g., Knows(z,,0J)

Conjunction Normal Form (CNF)

We like to prove] KBl a
equivalent to : KB n —a unsatifiable

We first rewrite k8 A —¢ into conjunctive normal form (CNF).

literals

A “conjunction of disjufu:ti(:ns‘//

(Av —B) A (B v ~C VD)

Clause Clause

In theory

* Any KB can be converted into CNF.

« In fact, any KB can be converted into CNF-3 using
clauses with at most 3 literals.

Example: Conversion to CNF (PC)

Bi1 & (P12 Vv Py)
1. Eliminate &, replacing a < B with (a = B)A(B = a).
(B11= (P12Vv Pay)) A((P12v Pyy) = Byy)

2. Eliminate =, replacing a = B with —av B.
(=B11 v P12V Pay) A(=(Prz v Pyy) vBy)

3. Move — inwards using de Morgan's rules and double-
negation: —(av g)=—ar—p
(B11V PiaVvPyy) A((=P12A=P24) v By)

4. Apply distributive law (A over v) and flatten:
(B4 VP12V Pa) A (=P v By) A (=P, v By)

. P
2. P—Q convertedto ~PvQ

3. ~Q

Resolution (PC)

Draw the resolution tree (actually an inverted
tree). Every node is a clausal form and branches

are intermediate inference steps.
~0 ~PvQ

Resolution Algorithm

KB |= a equivalent to
* The resolution algorithm tries to prove: g \ _y unsatisfiable

+ Generate all new sentences from KB and the query.
+ One of two things can happen:

1. Wefind P A—P which is unsatisfiable. i.e. we can entail
the query.

2. Wefind no contradiction: there is a model that satisfies the
sentence KBA-a
(non-trivial) and hence we cannot entail the query.

Conversion to CNF

« Everyone who loves all animals is loved by
someone:
Vx([Vy Animal(y) = Loves(x,y)] = [Jy Loves(y,x)])
1. Eliminate biconditionals and implications
VX([—Vy (—Animal(y) v Loves(x,y))] v [3y Loves(y,x)])

2. Move —inwards:"—Vx p = 3x —p, —3x p = Vx —p*
VX ([3y (=(=Animal(y) v Loves(x,y)))] v [3y Loves(y,x)])
Vx ([3y (—Animal(y) A —~Loves(x,y))] v [3y Loves(y,x)])
Vx([y (Animal(y) A —Loves(x,y))] v [3y Loves(y,x)])

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one
Vvx([Jy Animally) A —~Loves(x,y)] v [3z Loves(zx)])

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing
universally quantified variables:

Vx([Animal(F(x)) A ~Loves(x,F(x))] v Loves(G(x),X))

5. Drop universal quantifiers:
[Animal(F(x)) A~ —Loves(x,F(x))] v Loves(G(x),X)

6. Distribute v over A :
[Animal(F(x)) v Loves(G(x),x)] A [mLoves(x,F(x)) v Loves(G(x),x)]

Resolution in PC

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals
E.g., (Av—B) A (Bv—Cv-D)

» Resolution inference rule (for CNF):

v Vi, mvoLL Vo,

Ve VBV gV e VY My VN g Y My Ve Vo
where f and m are complementary literals.
E.g., PigVv Poa =P,
P1,3

Resolution is sound and complete
for propositional logic

Resolution in FOL

® Full first-order version:
4\/...\/4’0 mwv...\/mn
6V "V V VoV GV m VY Vi VY)8

where Unify(f, —m) = 6.

The two clauses are assumed to be standardized apart so that they
share no variables.

« For example, —Rich(x) v Unhappy(x)
Rich(Ken)
Unhappy(Ken)
with 8 = {x/Ken}

A More Concise Version

VI VL v, -n

1€EA i€B jeAkeB
\/ Subst(0,L;) €= (AUBNGk}
ieC

E.g.forA={1,2, 7}firstclauseis L, vL, v L,

Empty Clause means False

 Resolution theorem proving ends

— When the resolved clause has no literals (empty)
« This can only be because:

— Two unit clauses were resolved

« One was the negation of the other (after substitution)

— Example: g(X) and =q(X) or: p(X) and -p(bob)
* Hence if we see the empty clause

— This was because there was an inconsistency

— Hence the proof by refutation

Resolution as Search
Initial State: Knowledge base (KB) of axioms
and negated theorem in CNF

Operators: Resolution rule picks 2 clauses
and adds new clause

Goal Test: Does KB contain the empty
clause?

Search space of KB states
We want proof (path) or just checking (artefact)

