
11/30/2014

1

First-order logic
• First-order logic (FOL) models the world in terms of

– Objects, which are things with individual identities

– Properties of objects that distinguish them from other objects

– Relations that hold among sets of objects

– Functions, which are a subset of relations where there is only

one “value” for any given “input”

Ex: Objects: Students, lectures, companies, cars ...

– Relations: Brother-of, bigger-than, outside, part-of, has-color,

occurs-after, owns, visits, precedes, ...

– Properties: blue, oval, even, large, ...

– Functions: father-of, best-friend, second-half, one-more-than

...

Sentence � Atomicsentence

| (Sentence Connective Sentence)

| Quantifier Variable,. . . Sentence

| Sentence

AtomicSentence � Predicate(Term, . . .)

| (Term = Term

Term -� Function(Term, . . .)

I Constant

| Variable

Connective � ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, ⇒⇒⇒⇒

Quantifier � ∀, ∃

Constant � A (XI (John 1 . . .

Variable � a | x | s | . . .

Predicate � Before…

Function � Mother | …

Truth in first-order logic
• Sentences are true with respect to a model and an
interpretation

• Model contains objects (domain elements) and relations
among them

• Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

• An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn
are in the relation referred to by predicate

Entailment

• Entailment means that one thing follows from
another:

KB ╞ α
Knowledge base KB entails sentence α if and only if

α is true in all worlds where KB is true

– E.g., the KB containing “the Greens won” and “the Reds
won” entails “Either the Greens or the reds won“

– E.g., x+y = 4 entails 4 = x+y

– Entailment is a relationship between sentences (i.e.,
syntax) that is based on semantics

– entailment: necessary truth of one sentence given
another

–

Models

• Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)

– E.g. KB = Greens won and Reds
won α = Greens won

• Think of KB and α as collections of

constraints and of models m as

possible states. M(KB) are the solutions

to KB and M(α) the solutions to α.

Then, KB ╞ α when all solutions to

KB are also solutions to α.

Inference

• KB ├i α = sentence α can be derived from KB by procedure i

i.e. deriving sentences from other sentences

• Soundness: i is sound if whenever KB ├i α, it is also true that
KB╞ α

i.e. derivations produce only entailed sentences (no wrong
inferences, but maybe not all inferences)

• Completeness: i is complete if whenever KB╞ α, it is also
true that KB ├i α

i.e. derivations can produce all entailed sentences (all
inferences can be made, but maybe some wrong extra
ones as well)

11/30/2014

2

Validity and satisfiability
• A sentence is valid if it is true in all models,
• e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the following:
KB ╞ α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB ∧¬α) is unsatisfiable
(there is no model for which KB=true and is false)

Proof Methods in FOL

Three Major Families:

•Resolution

• Forward chaining

• Backward chaining

Some Other inference tools:

Entailment/ Unification/ GMP/
reduction

Inferencing in Predicate Calculus

• Resolution – Refutation

– Negate goal

– Convert all pieces of knowledge into clausal form (disjunction of literals)

– See if contradiction indicated by null clause can be derived

• Forward chaining

– Given P, , to infer Q

– P, match L.H.S of

– Assert Q from R.H.S

• Backward chaining

– Q, Match R.H.S of

– assert P

– Check if P exists

QP →

QP →

Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is
entailed by it:

∀v α
Subst({v/g}, α)

for any variable v and ground term g

• E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

Existential instantiation (EI)
• For any sentence α, variable v, and constant symbol k that

does not appear elsewhere in the knowledge base:

∃v α
Subst({v/k}, α)

• E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem
constant

Unification

• We can get the inference immediately if we can find a substitution θ such
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ

p q θ
Knows(John,x) Knows(John,Jane)

Knows(John,x) Knows(y,OJ)

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ)

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

11/30/2014

3

Unification

• We can get the inference immediately if we can find a substitution θ such
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ)

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ)

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ)

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}

Knows(John,x) Knows(x,OJ) {fail}

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Conjunction Normal Form (CNF)

We first rewrite into conjunctive normal form (CNF).

|

:

KB

equivalent to KB unsatifiable

α

α

=

∧ ¬
We like to prove:

KB α∧ ¬

A “conjunction of disjunctions”

(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

ClauseClause

literals

In theory
• Any KB can be converted into CNF.
• In fact, any KB can be converted into CNF-3 using
clauses with at most 3 literals.

Example: Conversion to CNF (PC)

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-
negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributive law (∧ over ∨) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

()α β α β¬ ∨ = ¬ ∧ ¬

1. P

2. converted to

3.

Draw the resolution tree (actually an inverted

tree). Every node is a clausal form and branches

are intermediate inference steps.

QP → QP ∨~

Q~

Q~

QP ∨~

P~ P

Resolution (PC)

11/30/2014

4

• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the query.
• One of two things can happen:

1. We find which is unsatisfiable. i.e. we can entail
the query.

2. We find no contradiction: there is a model that satisfies the
sentence

(non-trivial) and hence we cannot entail the query.

Resolution Algorithm

|KB equivalent to

KB unsatisfiable

α

α

=

∧ ¬

P P∧ ¬

KB α∧ ¬

Conversion to CNF

• Everyone who loves all animals is loved by
someone:

∀x([∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)])

1. Eliminate biconditionals and implications

∀x([¬∀y (¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)])

2. Move ¬ inwards:”¬∀x p ≡ ∃x ¬p, ¬ ∃x p ≡ ∀x ¬p“

∀x ([∃y (¬(¬Animal(y) ∨ Loves(x,y)))] ∨ [∃y Loves(y,x)])

∀x ([∃y (¬¬Animal(y) ∧ ¬Loves(x,y))] ∨ [∃y Loves(y,x)])

∀x([∃y (Animal(y) ∧ ¬Loves(x,y))] ∨ [∃y Loves(y,x)])

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀x([∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)])

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing
universally quantified variables:

∀x([Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x))

5. Drop universal quantifiers:

[Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

6. Distribute ∨ over ∧ :

[Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

Resolution in PC

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF):

li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ ls-1 ∨ ls+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where ls and mj are complementary literals.

E.g., P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete
for propositional logic

Resolution in FOL

• Full first-order version:

l1 ∨ ··· ∨ lk, m1 ∨ ··· ∨ mn

(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ

where Unify(li, ¬mj) = θ.

The two clauses are assumed to be standardized apart so that they
share no variables.

• For example, ¬Rich(x) ∨ Unhappy(x)

Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

A More Concise Version

E.g. for A = {1, 2, 7} first clause is L1 ∨ L2 ∨ L7

11/30/2014

5

Empty Clause means False

• Resolution theorem proving ends

– When the resolved clause has no literals (empty)

• This can only be because:

– Two unit clauses were resolved

• One was the negation of the other (after substitution)

– Example: q(X) and ¬q(X) or: p(X) and ¬p(bob)

• Hence if we see the empty clause

– This was because there was an inconsistency

– Hence the proof by refutation

Resolution as Search

• Initial State: Knowledge base (KB) of axioms
and negated theorem in CNF

• Operators: Resolution rule picks 2 clauses
and adds new clause

• Goal Test: Does KB contain the empty
clause?

• Search space of KB states

• We want proof (path) or just checking (artefact)

