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First-order logic
• First-order logic (FOL) models the world in terms of 

– Objects, which are things with individual identities

– Properties of objects that distinguish them from other objects

– Relations that hold among sets of objects

– Functions, which are a subset of relations where there is only 

one “value” for any given “input”

Ex: Objects: Students, lectures, companies, cars ... 

– Relations: Brother-of, bigger-than, outside, part-of, has-color, 

occurs-after, owns, visits, precedes, ... 

– Properties: blue, oval, even, large, ... 

– Functions: father-of, best-friend, second-half, one-more-than 

... 
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Truth in first-order logic
• Sentences are true with respect to a model and an 
interpretation

• Model contains objects (domain elements) and relations 
among them

• Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

• An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn
are in the relation referred to by predicate

Entailment

• Entailment means that one thing follows from 
another:

KB ╞ α
Knowledge base KB entails sentence α if and only if 

α is true in all worlds where KB is true

– E.g., the KB containing “the Greens won” and “the Reds 
won” entails “Either the Greens or the reds won“

– E.g., x+y = 4 entails  4 = x+y

– Entailment is a relationship between sentences (i.e., 
syntax) that is based on semantics

– entailment: necessary truth of one sentence given 
another

–

Models

• Logicians typically think in terms of models, which are formally 
structured worlds with respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)

– E.g. KB = Greens won and Reds
won α = Greens won

• Think of KB and α as collections of

constraints and of models m as 

possible states. M(KB) are the solutions

to KB and M(α) the solutions to α.

Then, KB ╞ α when all solutions to

KB are also solutions to α. 

Inference

• KB ├i α = sentence α can be derived from KB by procedure i

i.e. deriving sentences from other sentences

• Soundness: i is sound if whenever KB ├i α, it is also true that 
KB╞ α

i.e. derivations produce only entailed sentences (no wrong 
inferences, but maybe not all inferences)

• Completeness: i is complete if whenever KB╞ α, it is also 
true that KB ├i α 

i.e. derivations can produce all entailed sentences (all 
inferences can be made, but maybe some wrong extra 
ones as well)
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Validity and satisfiability
• A sentence is valid if it is true in all models,
• e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the following:
KB ╞ α if and only if (KB ⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB ∧¬α) is unsatisfiable
(there is no model for which KB=true and      is false) 

Proof Methods in FOL

Three Major Families: 

•Resolution

• Forward chaining

• Backward chaining

Some Other inference tools:

Entailment/ Unification/ GMP/ 
reduction

Inferencing in Predicate Calculus

• Resolution – Refutation

– Negate goal

– Convert all pieces of knowledge into clausal form (disjunction of literals)

– See if contradiction indicated by null clause        can be derived

• Forward chaining

– Given P, , to infer Q

– P, match L.H.S of 

– Assert Q from R.H.S

• Backward chaining

– Q, Match R.H.S of

– assert P

– Check if P exists

QP →

QP →

Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is 
entailed by it:

∀v α
Subst({v/g}, α)

for any variable v and ground term g

• E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

Existential instantiation (EI)
• For any sentence α, variable v, and constant symbol k that 

does not appear elsewhere in the knowledge base:

∃v α
Subst({v/k}, α)

• E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem
constant

Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ
Knows(John,x) Knows(John,Jane) 

Knows(John,x) Knows(y,OJ) 

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) 

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}

Knows(John,x) Knows(x,OJ) {fail}

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Conjunction Normal Form (CNF)

We first rewrite                  into conjunctive normal form (CNF).  

|

:

KB

equivalent to KB unsatifiable

α

α

=

∧ ¬
We like to prove:

KB α∧ ¬

A “conjunction of disjunctions”

(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

ClauseClause

literals

In theory
• Any KB can be converted into CNF.
• In fact, any KB can be converted into CNF-3 using 
clauses with at most 3 literals.

Example: Conversion to CNF (PC)

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-
negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributive law (∧ over ∨) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

( )α β α β¬ ∨ = ¬ ∧ ¬

1. P

2. converted to 

3.

Draw the resolution tree (actually an inverted 

tree). Every node is a clausal form and branches 

are intermediate inference steps.

QP → QP ∨~

Q~

Q~

QP ∨~

P~ P

Resolution  (PC)
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• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the query.
• One of two things can happen:

1. We find                         which is unsatisfiable. i.e. we can entail 
the query.

2. We find no contradiction: there is a model that satisfies the 
sentence

(non-trivial) and hence we cannot entail the query.

Resolution Algorithm

|KB equivalent to

KB unsatisfiable

α

α

=

∧ ¬

P P∧ ¬

KB α∧ ¬

Conversion to CNF

• Everyone who loves all animals is loved by 
someone:

∀x( [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)])

1. Eliminate biconditionals and implications

∀x([¬∀y (¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)])

2. Move ¬ inwards:”¬∀x p ≡ ∃x ¬p,  ¬ ∃x p ≡ ∀x ¬p“

∀x ([∃y (¬(¬Animal(y) ∨ Loves(x,y)))] ∨ [∃y Loves(y,x)] )

∀x ([∃y (¬¬Animal(y) ∧ ¬Loves(x,y))] ∨ [∃y Loves(y,x)] )

∀x( [∃y (Animal(y) ∧ ¬Loves(x,y))] ∨ [∃y Loves(y,x)] )

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀x( [∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)])

4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing 
universally quantified variables:

∀x( [Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x))

5. Drop universal quantifiers:

[Animal(F(x)) ∧ ¬Loves(x,F(x))]  ∨ Loves(G(x),x)

6. Distribute ∨ over ∧ :

[Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

Resolution in PC

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF):

li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ ls-1 ∨ ls+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where ls and mj are complementary literals. 

E.g., P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete 
for propositional logic

Resolution in FOL

• Full first-order version:

l1 ∨ ··· ∨ lk,          m1 ∨ ··· ∨ mn

(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ

where Unify(li, ¬mj) = θ.

The two clauses are assumed to be standardized apart so that they 
share no variables.

• For example, ¬Rich(x) ∨ Unhappy(x) 

Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

A More Concise Version

E.g. for A = {1, 2, 7} first clause is L1 ∨ L2 ∨ L7
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Empty Clause means False

• Resolution theorem proving ends

– When the resolved clause has no literals (empty)

• This can only be because:

– Two unit clauses were resolved 

• One was the negation of the other (after substitution)

– Example: q(X) and ¬q(X)    or:   p(X) and ¬p(bob)

• Hence if we see the empty clause

– This was because there was an inconsistency

– Hence the proof by refutation

Resolution as Search

• Initial State: Knowledge base (KB) of axioms 
and negated theorem in CNF

• Operators: Resolution rule picks 2 clauses 
and adds new clause

• Goal Test: Does KB contain the empty 
clause?

• Search space of KB states

• We want proof (path) or just checking (artefact)


