
11/6/2014

1

The Genetic Algorithm
(Evolutionary Analogy)

• Consider a population of rabbits:

� some individuals are faster and smarter than others

� Slower, dumper rabbits are likely to be
caught and eaten by foxes

� Fast, smart rabbits survive ,… produce more rabbits.

Evolutionary Analogy

�The rabbits that survive generate offspring,
which start to mix up their genetic material

�Furthermore, nature occasionally throws in a
wild properties because genes can mutate

�In this analogy, an individual rabbit represents a
solution to the problem(i.e. Single point in the
space)

�The foxes represent the problem constraints
(solutions that do more well are likely to survive)

Evolutionary Analogy

�For selection, we use a fitness function to rank
individuals of the population

�For reproduction, we define a crossover
operator which takes state descriptions of
individuals and combine them to create new
ones

�For mutation, we can choose individuals in the
population and alter part of its state.

The Genetic Algorithm
• Directed search algorithms based on the mechanics of

biological evolution

• Developed by John Holland, University of Michigan
(1970’s)

• To design artificial systems software that retains the
robustness of natural systems

• Provide efficient, effective techniques for search
problems, optimization and machine learning applications

• Widely-used today in business, scientific and engineering
circles

Terminology

• Evolutionary Computation (EC) refers to computer-
based problem solving systems that use computational
models of evolutionary process.

• Chromosome – It is an individual representing a
candidate solution of the optimization problem.

• Population – A set of chromosomes.

• gene – It is the fundamental building block of the
chromosome, each gene in a chromosome represents
each variable to be optimized. It is the smallest unit of
information.

• Objective: To find “a” best possible chromosome for a
given problem.

Overview of GAs

� GA emulate genetic evolution.

� A GA has distinct features:

�A string representation of chromosomes.

�A selection procedure for initial population and
for off-spring creation.

�A cross-over method and a mutation method.

�A fitness function.

�A replacement procedure.

� Parameters that affect GA are initial
population, size of the population, selection

process and fitness function.

11/6/2014

2

The GA Cycle of Reproduction

reproduction

population evaluation

modification

discard

deleted

members

parents

children

modified

children

evaluated children

Chromosomes

Chromosomes could be:

Bit strings (0101 ... 1100)

Real numbers (43.2 -33.1 ... 0.0 89.2)

Permutations of element (E11 E3 E7 ... E1 E15)

Lists of rules (R1 R2 R3 ... R22 R23)

Program elements (genetic programming)

... any data structure ...

population

Reproduction

reproduction

population

parents

children

Parents are ”selected” at each iteration.

Selection Process

• Selection is a procedure of picking parent chromosome
to produce off-spring.

• Types of selection:

– Random Selection – Parents are selected randomly
from the population.

– Proportional Selection – probabilities for picking each
chromosome is calculated as:

P(xi) = f(xi)/Σf(xj) for all j

Chromosome Modification

modification
children

• Operator types are:

– Mutation

– Crossover (recombination)

modified children

Crossover

P1 (0 1 1 0 1 0 0 0) (1 1 0 1 1 0 0 0) C1

P2 (1 1 0 1 1 0 1 0) (0 1 1 0 1 0 1 0) C2

Crossover is a critical feature of genetic

algorithms:

– It greatly accelerates search early in evolution of
a population

– It leads to effective combination of schemata
(subsolutions on different chromosomes)

11/6/2014

3

Mutation: Local Modification

Before: (1 0 1 1 0 1 1 0)

After: (1 0 1 1 1 1 1 0)

Before: (1.38 -69.4 326.44 0.1)

After: (1.38 -67.5 326.44 0.1)

• Causes movement in the search space
(local or global)

• Restores lost information to the population

Evaluation

• The evaluator decodes a chromosome and
assigns it a fitness measure

evaluation

evaluated

children

modified

children

Deletion

• Generational GA:
entire populations replaced with each iteration

• Steady-state GA:
a few members replaced each generation

population

discard

discarded members

• Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 × 7/2 = 28)

• Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 × 7/2 = 28)

• P(child) = 24/(24+23+20+11) = 31%

• P(child) = 23/(24+23+20+11) = 29% etc

fitness:
#non-attacking queens

probability of being
regenerated
in next generation

Creativity in GA

�GAs can be thought of as a simultaneous, parallel
hill climbing search --- The population as a whole is
trying to converge to an optimal solution

�Because solutions can evolve from a variety of
factors, very novel solutions can be discovered

11/6/2014

4

Game Playing

A (pure) strategy:

a complete set of advance instructions that specifies a
definite choice for every conceivable situation in
which the player may be required to act.

In a two-player game, a strategy allows the player to
have a response to every move of the opponent.

Game-playing programs implement a strategy as a
software mechanism that supplies the right move on
request.

Two-Person Perfect Information

Deterministic Game

• Two players take turns making moves

• Call one Min and the other Max

• Deterministic moves: Board state fully known,

• One player wins by defeating the other (or else there is a tie)

• Want a strategy to win, assuming the other person plays

rationally

A logic-based approach to
games

Find a winning strategy by proving that the
game can be won -- use backward
chaining.

A very simple game: nim.

� initially, there is one stack of chips;

� a move: select a stack and divide it in two
unequal non-empty stacks;

� a player who cannot move loses the game.

(The player who moves first can win.)

Nim

Static evaluation

A static evaluation function returns the value
of a move without trying to play (which would
mean simulating the rest of the game but not
playing it).

“Usually” a static evaluation function returns positive
values for positions advantageous to Player 1,
negative values for positions advantageous to
Player 2.

If player Player 1 is rational, he will choose the
maximal value of a leaf.
Player Player 2 will choose the minimal value.

If we can have (guess or calculate) the value of
an internal node N, we can treat it as if it were
a leaf. This is the basis of the minimax
procedure.

No tree would be necessary if we could evaluate
the initial position statically. Normally we need
a tree, and we need to look-ahead into it.
Further positions can be evaluated more
precisely, because there is more information,
and a more focussed search.

Static evaluation

11/6/2014

5

Minimax Tree

• Create a utility function

– Evaluation of board/game state to determine how
strong the position of each player.

– Player 1 wants to maximize the utility function

– Player 2 wants to minimize the utility function

• Minimax tree

– Generate a new level for each move

– Levels alternate between “max” (player 1 moves)
and “min” (player 2 moves)

Minimax Tree Evaluation

•Assign utility values to leaves

– If leaf is a “final” state, assign the maximum or
minimum possible utility value (depending on who
would win)

– If leaf is not a “final” state, must use some other
heuristic, specific to the game, to evaluate how
good/bad the state is at that point

Minimax tree

Max

Min

Max

Min

Minimax tree

Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

Minimax tree

Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

28 -3 12 70 -4 -73 -14 -8

Minimax tree

Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

21 -3 12 70 -4 -73 -14 -8

-3 -4 -73

11/6/2014

6

Minimax tree

Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

21 -3 12 70 -4 -73 -14 -8

-3 -4 -73

-3

Tic-Tac-Toe
Let player A be x and let open(x), open(o)

mean the number of lines open to x and o.
There are 8 lines. An evaluation function for
position P:

f(P) = -∞ if o wins

f(P) = +∞ if x wins

f(P) = open(x) - open(o) otherwise

Example:

open(x) - open(o) = 4 - 6

x
o

Assumptions:
only one of symmetrical positions is
generated;

Player B chooses the minimal backed-up value among level 1 nodes.

Player A chooses the maximal value, and makes the move.

Player B, as a rational agent, selects the optimal response.

x
x

x

x x x x x

x x x x x

o o
o

o
o

o o
xx

o
o

o
o

o

6-5 5-5 6-5 5-5 4-5 5-4 6-4

5-6 5-5 5-6 6-6 4-6

x xx
x x

o

x x

o o

x

o
o

x

o o

3-3 3-2 4-3 4-2 3-2 3-2

o o

x
xo x

x
o

xx
o

x
x

o
x

x

o
x

x

o

o

o

x x
x

x
x

o

x x

o
o

x

o

o

x

o o

2-2 3-2 4-2 4-3 4-3 3-3

o o

x
ox

xx
o

x
x

o
x
x

o
x
x

ox
x

oo o

Building complete plies is usually not necessary. If we evaluate a
position when it is generated, we may save a lot.

Assume that we are at a minimizing level. If the evaluation
function returns -∞, we do not need to consider other
positions:
-∞ will be the minimum.

The same applies to +∞ at a maximizing level.

2-1 3-1

2-1 3-1

-∞

x
x

o o

x
x

o o

x
x

o o

x
x

o o

x
x

o o

x
x

o ox
x

x x
x

x
x

o o

x
x

o o

x
x

o o

x
x

o o
x

x x
x

-∞ -∞-∞

o o o o

11/6/2014

7

Pruning the Minimax Tree

� Minimax works best for large trees, but it can be useful

even in mini-games such as tic-tac-toe.

� Since we have limited time available, we want to

avoid unnecessary computation in the minimax tree.

� Pruning: ways of determining that certain branches

will not be useful. Then cut of these branches

pruning

α pruning

MAX knows that it can at least
get “3” by playing this branch

MIN will choose “3”, because it minimizes the
utility (which is good for MIN)

α pruning

MAX knows that the new branch
will never be better than 2 for him.
He can ignore it.

MIN can certainly do as good as
2, but maybe better (= smaller)

α pruning

MIN will do at least as good as 14
in this branch(which is very good
for MAX!) so MAX will want to
explore this branch more.

α pruning

MIN will do at least as good as 5
in this branch(which is still good
for MAX) so MAX will want to
explore this branch more.

11/6/2014

8

α pruning

MIN will be able to play this last branch
and get 2. This is worse than 3, so
MAX will play 3.

β pruning

• Similar idea to α pruning, but the other way around

• If the current minimum is less than the successor’s

max value, don’t look down that max tree any more

ββββ pruning example

• Some subtrees at second level already have values >

min from previous, so we can stop evaluating them.

10021 -3 12 70 -4 73 -14

Min

Min

Max 21

21

70 73

Why is it called α-β?

• α is the value of the best
(i.e., highest-value) choice
found so far at any choice
point along the path for
max

• If v is worse than α, max
will avoid v

� prune that branch

• Define β similarly for min

αααα-ββββ Pruning properties

• Pruning by these cuts does not affect final result

– May allow you to go much deeper in tree

• Properties:

– Evaluating “best” branch first yields better likelihood
of pruning later branches

– Perfect ordering reduces time to bm/2

Properties of minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an rational opponent)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games
� exact solution completely infeasible

