# The Genetic Algorithm (Evolutionary Analogy)

- · Consider a population of rabbits:
- some individuals are faster and smarter than others
- Slower, dumper rabbits are likely to be caught and eaten by foxes



Fast, smart rabbits survive ,... produce more rabbits.



## **Evolutionary Analogy**

- The rabbits that survive generate offspring, which start to mix up their genetic material
- >Furthermore, nature occasionally throws in a wild properties because genes can mutate
- In this analogy, an individual rabbit represents a solution to the problem(i.e. Single point in the space)
- > The foxes represent the problem constraints (solutions that do more well are likely to survive)

# **Evolutionary Analogy**

- > For selection, we use a fitness function to rank individuals of the population
- For reproduction, we define a crossover operator which takes state descriptions of individuals and combine them to create new ones
- > For mutation, we can choose individuals in the population and alter part of its state.

# The Genetic Algorithm

- Directed search algorithms based on the mechanics of biological evolution
- Developed by John Holland, University of Michigan (1970's)
- To design artificial systems software that retains the robustness of natural systems
- Provide efficient, effective techniques for search problems, optimization and machine learning applications
- Widely-used today in business, scientific and engineering circles

#### **Terminology**

- Evolutionary Computation (EC) refers to computerbased problem solving systems that use computational models of evolutionary process.
- Chromosome It is an individual representing a candidate solution of the optimization problem.
- · Population A set of chromosomes.
- gene It is the fundamental building block of the chromosome, each gene in a chromosome represents each variable to be optimized. It is the smallest unit of information.
- Objective: To find "a" best possible chromosome for a given problem.

#### Overview of GAs

- GA emulate genetic evolution.
- A GA has distinct features:
- » A string representation of chromosomes.
- > A selection procedure for initial population and for off-spring creation.
- » A cross-over method and a mutation method.
- > A fitness function.
- » A replacement procedure.
- Parameters that affect GA are initial population, size of the population, selection process and fitness function.

# The GA Cycle of Reproduction reproduction reproduction parents population evaluated children deleted members discard

#### Chromosomes

opulation

#### Chromosomes could be:

 Bit strings
 (0101 ... 1100)

 Real numbers
 (43.2 -33.1 ... 0.0 89.2)

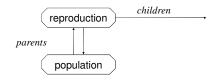
 Permutations of element
 (E11 E3 E7 ... E1 E15)

 Lists of rules
 (R1 R2 R3 ... R22 R23)

 Program elements
 (genetic programming)

... any data structure ...

# Reproduction



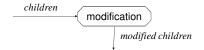
Parents are "selected" at each iteration.

#### **Selection Process**

- Selection is a procedure of picking parent chromosome to produce off-spring.
- · Types of selection:
  - Random Selection Parents are selected randomly from the population.
  - Proportional Selection probabilities for picking each chromosome is calculated as:

$$P(\mathbf{x}_i) = f(\mathbf{x}_i)/\Sigma f(\mathbf{x}_i) \quad \text{ for all } j$$

#### **Chromosome Modification**



- · Operator types are:
  - Mutation
  - Crossover (recombination)

#### Crossover

Crossover is a critical feature of genetic algorithms:

- It greatly accelerates search early in evolution of a population
- It leads to effective combination of schemata (subsolutions on different chromosomes)

#### Mutation: Local Modification

Before: (1 0 1 1 0 1 1 0) After: (1 0 1 1 1 1 0)

Before: (1.38 -69.4 326.44 0.1)
After: (1.38 -67.5 326.44 0.1)

- Causes movement in the search space (local or global)
- · Restores lost information to the population

### **Evaluation**

evaluated children evaluation

 The evaluator decodes a chromosome and assigns it a fitness measure

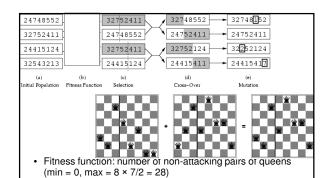
#### Deletion

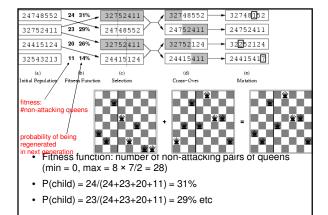
population

discarded members

discard

- Generational GA: entire populations replaced with each iteration
- Steady-state GA: a few members replaced each generation





# Creativity in GA

- ✓ GAs can be thought of as a simultaneous, parallel hill climbing search --- The population as a whole is trying to converge to an optimal solution
- Because solutions can evolve from a variety of factors, very novel solutions can be discovered

## Game Playing

#### A (pure) strategy:

- a complete set of advance instructions that specifies a definite choice for every conceivable situation in which the player may be required to act.
- In a two-player game, a strategy allows the player to have a response to every move of the opponent.
- Game-playing programs implement a strategy as a software mechanism that supplies the right move on request.

#### Two-Person Perfect Information Deterministic Game

- · Two players take turns making moves
- · Call one Min and the other Max
- · Deterministic moves: Board state fully known,
- One player wins by defeating the other (or else there is a tie)
- Want a strategy to win, assuming the other person plays rationally

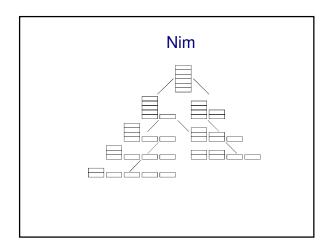
# A logic-based approach to games

Find a winning strategy by *proving* that the game can be won -- use backward chaining.

A very simple game: nim.

- initially, there is one stack of chips;
- a move: select a stack and divide it in two unequal non-empty stacks;
- a player who cannot move loses the game.

(The player who moves first can win.)



#### Static evaluation

- A static evaluation function returns the value of a move without trying to play (which would mean simulating the rest of the game but not playing it).
- "Usually" a static evaluation function returns positive values for positions advantageous to **Player 1**, negative values for positions advantageous to **Player 2**.
- If player **Player 1** is rational, he will choose the <u>maximal</u> value of a leaf.

Player Player 2 will choose the minimal value.

#### Static evaluation

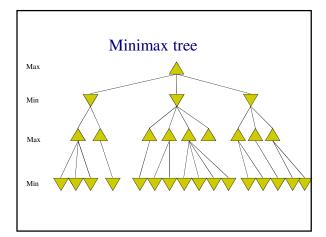
- If we can have (guess or calculate) the value of an internal node **N**, we can treat it as if it were a leaf. This is the basis of the minimax procedure.
- No tree would be necessary if we could evaluate the initial position statically. Normally we need a tree, and we need to look-ahead into it. Further positions can be evaluated more precisely, because there is more information, and a more focussed search.

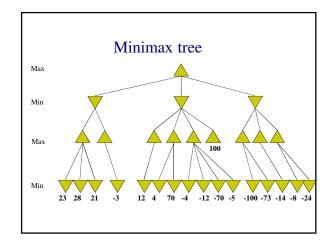
## **Minimax Tree**

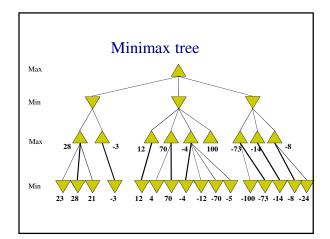
- Create a utility function
  - Evaluation of board/game state to determine how strong the position of each player.
  - Player 1 wants to maximize the utility function
  - Player 2 wants to minimize the utility function
- · Minimax tree
  - Generate a new level for each move
  - Levels alternate between "max" (player 1 moves) and "min" (player 2 moves)

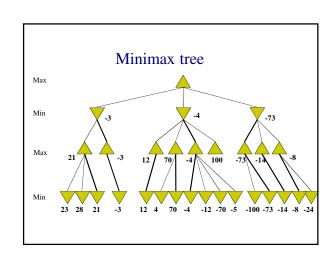
# **Minimax Tree Evaluation**

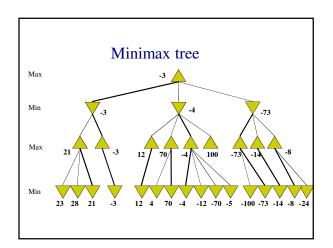
- •Assign utility values to leaves
  - If leaf is a "final" state, assign the maximum or minimum possible utility value (depending on who would win)
  - If leaf is not a "final" state, must use some other heuristic, specific to the game, to evaluate how good/bad the state is at that point











# Tic-Tac-Toe

Let player **A** be x and let open(x), open(o) mean the number of lines open to x and o. There are 8 lines. An evaluation function for position P:

 $f(P) = -\infty$  if o wins

 $f(P) = +\infty if x wins$ 

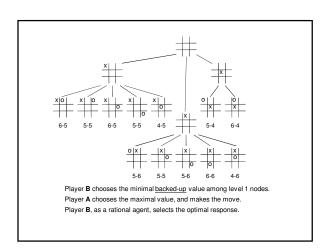
f(P) = open(x) - open(o) otherwise

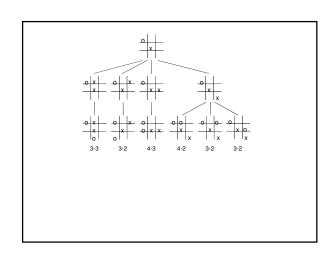
Example:

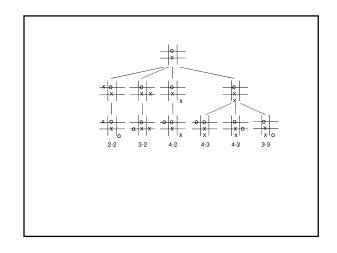
open(x) - open(o) = 4 - 6

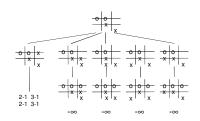
Assumptions: only one of symmetrical positions is

generated;









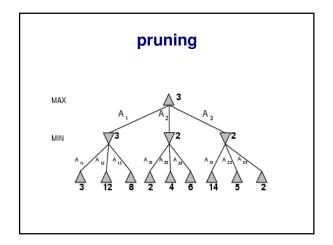
Building complete plies is usually not necessary. If we evaluate a position when it is generated, we may save a lot.

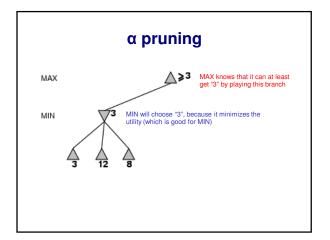
Assume that we are at a minimizing level. If the evaluation function returns -∞, we do not need to consider other positions:
-∞ will be the minimum.

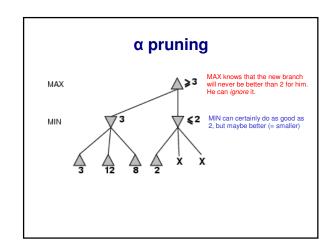
The same applies to  $+\infty$  at a maximizing level.

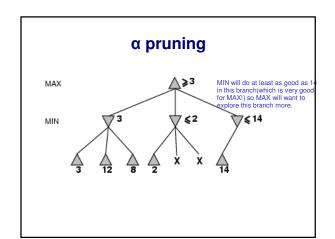
# **Pruning the Minimax Tree**

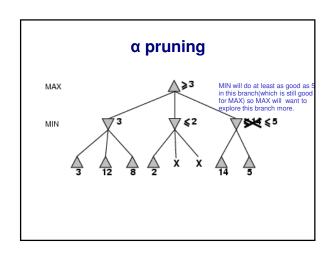
- Minimax works best for large trees, but it can be useful even in mini-games such as tic-tac-toe.
- Since we have limited time available, we want to avoid unnecessary computation in the minimax tree.
- Pruning: ways of determining that certain branches will not be useful. Then cut of these branches







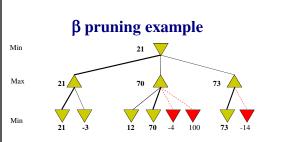




# α pruning MAX **\* 54 54** 2 MIN MIN will be able to play this last branch and get 2. This is worse than 3, so MAX will play 3.

# β pruning

- Similar idea to  $\alpha$  pruning, but the other way around
- If the current minimum is less than the successor's max value, don't look down that max tree any more



• Some subtrees at second level already have values > min from previous, so we can stop evaluating them.

# Why is it called $\alpha$ - $\beta$ ?

MIN

MIN

- $\alpha$  is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for
- If v is worse than  $\alpha$ , maxwill avoid v
- → prune that branch
- Define  $\beta$  similarly for min

MAX MAX

# α-β Pruning properties

- Pruning by these cuts does not affect final result
  - May allow you to go much deeper in tree
- Properties:
  - Evaluating "best" branch first yields better likelihood of pruning later branches
  - Perfect ordering reduces time to b<sup>m/2</sup>

# Properties of minimax

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an rational opponent)
- Time complexity? O(bm)
- Space complexity? O(bm) (depth-first exploration)
- For chess, b ≈ 35, m ≈100 for "reasonable" games → exact solution completely infeasible