Quick Quiz 10 minutes

Put in CNF $(A \lor B) \Rightarrow (C \land D).$

Reduction to propositional inference

Suppose the KB contains just the following:

```
\forall x \; \mathsf{King}(x) \land \mathsf{Greedy}(x) \Rightarrow \mathsf{Evil}(x)
```

King(John)

Greedy(John)

Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have:

 $King(John) \wedge Greedy(John) \Rightarrow Evil(John)$

 $\mathsf{King}(\mathsf{Richard}) \land \mathsf{Greedy}(\mathsf{Richard}) \Rightarrow \mathsf{Evil}(\mathsf{Richard})$

King(John)

Greedy(John)

Brother(Richard, John)

- The new KB is propositionalized: proposition symbols are
- King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction to propositional inference

- Every FOL KB can be propositionalized so as to preserve entailment (A ground sentence is entailed by new KB iff entailed by original KB)
- Idea: propositionalize KB and query, apply resolution in PC, return result
- Problem: with function symbols, there are infinitely many ground terms,
 - e.g., Father(Father(John)))

Reduction to propositional inference

Theorem: Herbrand (1930). If a sentence α is entailed by a FOL KB, it is entailed by a finite subset of the propositionalized KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is semidecidable (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)

→ Resolution won't always give an answer since entailment is only semidecidable

Problems with propositionalization

- Propositionalization seems to generate lots of irrelevant sentences.
- E.g., from:
- $\forall x \operatorname{King}(x) \land \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$

King(John)

∀y Greedy(y)

Brother(Richard, John)

 it seems obvious that *Evil John*, but propositionalization produces lots of facts such as *Greedy Richard* that are irrelevant

Generalized Modus Ponens (GMP)

$$\frac{p_1\text{'},p_2\text{'},\,\ldots\,,\,p_n\text{'},\,(\,p_1\wedge p_2\wedge\ldots\wedge p_n\mathop{\Rightarrow} q)}{q\theta}$$

 p_1' is *King(John*) p_1 is *King(x*)

 p_2 ' is *Greedy(y)* p_2 is *Greedy(x)*

 θ is {x/John,y/John} q is **Evi(x**)

 $q \theta is$ **Evil(John)**

Soundness and Completeness of GMP

- GMP is sound
 - Only derives sentences that are logically entailed (proof on p276 in text)
 - GMP is not complete for FOL
 - Generalized Modus Ponens is complete for KBs consisting of definite clauses
 - Complete: derives all sentences that are entailed
 - OR...answers every query whose answers are entailed by such a KB
 - Definite clause: disjunction of literals of which exactly one is positive,
 - e.g., King(x) AND Greedy(x) -> Evil(x)

NOT(King(x)) OR NOT(Greedv(x)) OR Evil(x)

Conjunction Normal Form (CNF)

We like to prove:

 $KB \models \alpha$

equivalent to : $KB \land \neg \alpha$ unsatifiable

We first rewrite $KB \land \neg \alpha$ into conjunctive normal form (CNF).

A "conjunction of disjunctions" literals $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$ Clause Clause

In theory

- · Any KB can be converted into CNF.
- In fact, any KB can be converted into CNF-3, i.e. using clauses with at most 3 literals.

Example: Conversion to CNF (PC)

$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

- 3. Move \neg inwards using de Morgan's rules and double-negation: $\neg(\alpha \lor \beta) = \neg\alpha \land \neg\beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- 4. Apply distributive law (∧ over ∨) and flatten:

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

Resolution Algorithm in FOPC

- 1) Convert sentences in the KB to CNF (clausal form)
- 2) Take the negation of the proposed query, convert it to CNF, and add it to the KB.
- **3)** Repeatedly apply the resolution rule to derive new clauses.
- **4)** If the empty clause (False) is eventually derived, stop and conclude that the proposed theorem is true.

Procedure:

- ✓ Eliminate implications and biconditionals
- √ Move ¬ inward
- √ Standardize variables
- ✓ Move quantifiers left
- ✓ Skolemize: replace each existentially quantified variable with a Skolem constant or Skolem function
- ✓ Distribute ∧ over ∨ to convert to conjunctions of clauses
- ✓ Convert clauses to implications if desired for readability

$$(\neg a \lor \neg b \lor c \lor d)$$
 To $a \lor b => c \lor d$

Conversion to CNF

Everyone who loves all animals is loved by someone:

```
\forall x ( [\forall y \; \textit{Animal}(y) \Rightarrow \textit{Loves}(x,y)] \Rightarrow [\exists y \; \textit{Loves}(y,x)])
1. Eliminate biconditionals and implications
\forall x ([\neg \forall y \; (\neg \textit{Animal}(y) \lor \textit{Loves}(x,y))] \lor [\exists y \; \textit{Loves}(y,x)])
```

2. Move \neg inwards:" $\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x \neg p$ "

```
\forall x ([\exists y (\neg(\neg \textit{Animal} y) \lor \textit{Loves}(x,y)))] \lor [\exists y \textit{Loves}(y,x)]) \\ \forall x ([\exists y (\neg\neg \textit{Animal}(y) \land \neg \textit{Loves}(x,y))] \lor [\exists y \textit{Loves}(y,x)]) \\ \forall x ([\exists y (\textit{Animal}(y) \land \neg \textit{Loves}(x,y))] \lor [\exists y \textit{Loves}(y,x)])
```

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

$$\forall x ([\exists y \; Animal(y) \land \neg Loves(x,y)] \lor [\exists z \; Loves(z,x)])$$

4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

$$\forall x ([Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x))$$

5. Drop universal quantifiers:

$$[Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$$

6. Distribute ∨ over ∧:

```
[Animal(F(x)) \lor Loves(G(x), x)] \land [\negLoves(x, F(x)) \lor Loves(G(x), x)]
```

Resolution in PC

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals

E.g.,
$$(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$$

• Resolution inference rule (for CNF):

where l_s and m_i are complementary literals.

E.g.,
$$P_{1,3} \lor P_{2,2}$$
, $\neg P_{2,2}$

Resolution is sound and complete for propositional logic

Resolution in FOL

• Full first-order version:

$$\frac{\textit{l}_1 \vee \cdots \vee \textit{l}_k, \qquad \textit{m}_1 \vee \cdots \vee \textit{m}_n}{(\textit{l}_1 \vee \cdots \vee \textit{l}_{i-1} \vee \textit{l}_{i+1} \vee \cdots \vee \textit{l}_k \vee \textit{m}_1 \vee \cdots \vee \textit{m}_{j-1} \vee \textit{m}_{j+1} \vee \cdots \vee \textit{m}_n)\theta}$$
 where Unify(\textit{l}_i , $\neg \textit{m}_i$) = θ .

The two clauses are assumed to be standardized apart so that they share no variables.

with $\theta = \{x/Ken\}$

A More Compact Version

$$\frac{\bigvee_{i \in A} L_i \qquad Unify(L_j, \neg L_k)}{\bigvee_{i \in C} Subst(\theta, L_i)} \qquad j \in A, k \in B \\
C = (A \cup B) \setminus \{j, k\}$$

E.g. for A = $\{1, 2, 7\}$ first clause is $L_1 \vee L_2 \vee L_7$

Empty Clause means False

- Resolution theorem proving ends
 - When the resolved clause has no literals (empty)
- This can only be because:
 - Two unit clauses were resolved
 - One was the negation of the other (after substitution)
 - Example: q(X) and $\neg q(X)$ or: p(X) and $\neg p(bob)$
- · Hence if we see the empty clause
 - This was because there was an inconsistency
 - Hence the proof by refutation

Resolution as Search

- Initial State: Knowledge base (KB) of axioms and negated theorem in CNF
- Operators: Resolution rule picks 2 clauses and adds new clause
- Goal Test: Does KB contain the empty clause?
- Search space of KB states

Socrates' Example

- KB: Socrates is a man and all men are mortal Therefore Socrates is mortal
- Initial state
 - 1) is_man(socrates)
 - 2) \neg is_man(X) \vee is_mortal(X)
 - 3) ¬is_mortal(socrates) (negation of theorem)
- Resolving (1) & (2) gives new state
 - 4) is_mortal(socrates)

Resolving (3) & (4) gives new state empty

Resolution Proof Tree (Proof 2)

Read as:

You said that all men were mortal. That means that for all things X, either X is not a man, or X is mortal. If we assume that Socrates is not mortal, then, given your previous statement, this means Socrates is not a man. But you said that Socrates is a man, which means that our assumption was false, so Socrates must be mortal.

Resolution Algorithm in FOPC

- 1) Convert sentences in the KB to CNF (clausal form)
- **2)** Take the negation of the proposed query, convert it to CNF, and add it to the KB.
- **3)** Repeatedly apply the resolution rule to derive new clauses.
- **4)** If the empty clause (False) is eventually derived, stop and conclude that the proposed theorem is true.

Procedure:

- ✓ Eliminate implications and biconditionals
- ✓ Move ¬ inward
- √Standardize variables
- √ Move quantifiers left
- ✓ Skolemize: replace each existentially quantified variable with a Skolem constant or Skolem function
- ✓ Distribute ∧ over ∨ to convert to conjunctions of clauses
- √ Convert clauses to implications if desired for readability

$$(\neg a \lor \neg b \lor c \lor d)$$
 To $a \lor b => c \lor d$

Conversion to CNF

Everyone who loves all animals is loved by someone:

```
\forall x ( [\forall y \; \textit{Animal(y)} \Rightarrow \textit{Loves(x,y)}] \Rightarrow [\exists y \; \textit{Loves(y,x)}])
```

1. Eliminate biconditionals and implications

$$\forall x([\neg \forall y \ (\neg \textit{Animal}(y) \lor \textit{Loves}(x,y))] \lor [\exists y \ \textit{Loves}(y,x)])$$

2. Move \neg inwards:" $\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x \neg p$ "

$$\forall x ([\exists y (\neg(\neg \textit{Animal}(y) \lor \textit{Loves}(x,y)))] \lor [\exists y \textit{Loves}(y,x)])$$

$$\forall x ([\exists y (\neg \neg Animal, y) \land \neg Loves(x, y))] \lor [\exists y Loves(y, x)])$$

$$\forall x ([\exists y (Animal(y) \land \neg Loves(x,y))] \lor [\exists y Loves(y,x)])$$

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

 $\forall x ([\exists y \; \textit{Animal(y)} \land \neg \textit{Loves(x,y)}] \lor [\exists z \; \textit{Loves(z,x)}])$

4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

 $\forall x ([Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x))$

5. Drop universal quantifiers:

 $[Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$

6. Distribute ∨ over ∧:

[Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]

Example: KB

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat?

Example: KB

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna. Did Curiosity kill the cat?

A. $\exists x \ Dog(x) \land Owns(Jack, x)$

B. $\forall x \ (\exists y \ Dog(y) \land Owns(x, y)) \Rightarrow AnimalLover(x)$

C. $\forall x \ AnimalLover(x) \Rightarrow \forall y \ Animal(y) \Rightarrow \neg Kills(x, y)$

D. $Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna)$

E. Cat(Tuna)

 $F. \forall x \ Cat(x) \Rightarrow Animal(x)$

Example: (CNF)

```
A1. Dog(D)
```

A2. Owns(Jack, D)

B. $Dog(y) \land Owns(x, y) \Rightarrow AnimalLover(x)$

C. $AnimalLover(x) \land Animal(y) \land Kills(x, y) \Rightarrow False$

D. $Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna)$

E. Cat(Tuna)

 $F. Cat(x) \Rightarrow Animal(x)$

Example: Proof Tree

Forward chaining

- FC: "Idea" fire any rule whose premises are satisfied in the **KB**, add its conclusion to the **KB**, until query is found
- · Deduce new facts from axioms
- · Hopefully end up deducing the theorem statement
- ❖ Can take a long time: not using the goal to direct search
- Sound and complete for first-order definite clauses
- Datalog = first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations
- May not terminate in general if α is not entailed
- This is unavoidable: entailment with definite clauses is semidecidable

Forward Chaining

- Use modus ponens to always derive all consequences from new information
- To avoid looping and duplicated effort, must prevent addition of a sentence to the KB which is the same as one already present.

Problems with Forward Chaining

 Inference can explode forward and may never terminate.

Even(x) \rightarrow Even(plus(x,2)) Integer(x) \rightarrow Even(times(2,x)) Even(x) \rightarrow Integer(x) Even(2)

14-28
26
48
2-4
10-20
40
16-18-36
34

Forward chaining algorithm

```
function FOL-FC-Ask(KB, \alpha) returns a substitution or false repeat until new is empty new \leftarrow \{ \} for each sentence r in KB do  (p_1 \land \ldots \land p_n \Rightarrow q) \leftarrow \text{STANDARDIZE-APART}(r) for each \theta such that (p_1 \land \ldots \land p_n)\theta = (p'_1 \land \ldots \land p'_n)\theta for some p'_1, \ldots, p'_n in KB  q' \leftarrow \text{SUBST}(\theta, q) if q' is not a renaming of a sentence already in KB or new then do add q' to new  \phi \leftarrow \text{UNIFY}(q', \alpha) if \phi is not fail then return \phi add new to KB return false
```

Backward chaining

- BC: "Idea" work backwards from the query q in (p→q)
 check if q is already known, or
 prove by BC all premises of some rule concluding q
- · Start with the conclusion and work backwards
 - Hope to end up at the facts from KB
- Widely used for logic programming
- PROLOG is backward chaining

Remarks:

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal has already been proved true, or has already failed

Backward Chaining

- Start from a query or atomic sentence to be proven and look for ways to prove it
- Query can contain variables
- Inference process should return all sets of variables hat satisfy the query
- First try to answer query by unifying it to all possible facts in the KB
- Next to tries to prove it using a rule whose consequent unifies with the query and try to prove all its antecedents recursively

Backward chaining algorithm

```
function FOL-BC-ASK(KB, goals, \theta) returns a set of substitutions inputs: KB, a knowledge base goals, a list of conjuncts forming a query \theta, the current substitution, initially the empty substitution \{\} local variables: ans, a set of substitutions, initially empty if goals is empty then return \{\theta\} q' \leftarrow \text{SUBST}(\theta, \text{FIRST}(goals)) for each r in KB where STANDARDIZE-APART(r) = (p_1 \land \ldots \land p_n \Rightarrow q) and \theta' \leftarrow \text{UNIFY}(q, q') succeeds ans \leftarrow \text{FOL-BC-ASK}(KB, [p_1, \ldots, p_n | \text{REST}(goals)], \text{COMPOSE}(\theta, \theta')) \cup ans return ans
```