
8/4/2016

1

1. P

2. converted to

3.

Draw the resolution tree (actually an inverted

tree). Every node is a clausal form and branches

are intermediate inference steps.

QP → QP ∨~

Q~

Q~

QP ∨~

P~ P

Resolution in PC

8/4/2016

2

• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the query.
• One of two things can happen:

1. We find which is unsatisfiable. i.e. we can entail
the query.

2. We find no contradiction: there is a model that satisfies the
sentence

(non-trivial) and hence we cannot entail the query.

Resolution Algorithm in PC

|KB equivalent to

KB unsatisfiable

α

α

=

∧ ¬

P P∧ ¬

KB α∧ ¬

8/4/2016

3

Resolution Algorithm in FOPC

1) Convert sentences in the KB to CNF (clausal form)
2) Take the negation of the proposed query, convert it to CNF,
and add it to the KB.
3) Repeatedly apply the resolution rule to derive new clauses.
4) If the empty clause (False) is eventually derived, stop and
conclude that the proposed theorem is true.
Procedure:
�Eliminate implications and biconditionals
�Move ¬ inward
�Standardize variables
�Move quantifiers left
�Skolemize: replace each existentially quantified variable with a

Skolem constant or Skolem function
�Distribute ∧ over ∨ to convert to conjunctions of clauses
�Convert clauses to implications if desired for readability

(¬ a ∨ ¬ b ∨ c ∨ d) To a ∨ b => c ∨ d

8/4/2016

4

Conversion to CNF

• Everyone who loves all animals is loved by
someone:

∀x([∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)])

1. Eliminate biconditionals and implications

∀x([¬∀y (¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)])

2. Move ¬ inwards:”¬∀x p ≡ ∃x ¬p, ¬ ∃x p ≡ ∀x ¬p“

∀x ([∃y (¬(¬Animal(y) ∨ Loves(x,y)))] ∨ [∃y Loves(y,x)])

∀x ([∃y (¬¬Animal(y) ∧ ¬Loves(x,y))] ∨ [∃y Loves(y,x)])

∀x([∃y (Animal(y) ∧ ¬Loves(x,y))] ∨ [∃y Loves(y,x)])

8/4/2016

5

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀x([∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)])

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the enclosing
universally quantified variables:

∀x([Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x))

5. Drop universal quantifiers:

[Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

6. Distribute ∨ over ∧ :

[Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

8/4/2016

6

Recall: Resolution in PC

• Resolution inference rule (for CNF):

li ∨… ∨ lk, m1 ∨ … ∨ mn

li ∨ … ∨ ls-1 ∨ ls+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn

where ls and mj are complementary literals.

E.g., P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete
for propositional logic

8/4/2016

7

Resolution in FOL

• Full first-order version:

l1 ∨ ··· ∨ lk, m1 ∨ ··· ∨ mn

(l1 ∨ ··· ∨ li-1 ∨ li+1 ∨ ··· ∨ lk ∨ m1 ∨ ··· ∨ mj-1 ∨ mj+1 ∨ ··· ∨ mn)θ

where Unify(li, ¬mj) = θ.

The two clauses are assumed to be standardized apart so that they
share no variables.

• For example, ¬Rich(x) ∨ Unhappy(x)

Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

8/4/2016

8

Empty Clause means False

• Resolution theorem proving ends

– When the resolved clause has no literals (empty)

• This can only be because:

– Two unit clauses were resolved

• One was the negation of the other (after substitution)

– Example: q(X) and ¬q(X) or: p(X) and ¬p(bob)

• Hence if we see the empty clause

– This was because there was an inconsistency

– Hence the proof by refutation

8/4/2016

9

Resolution as Search

• Initial State: Knowledge base (KB) of axioms
and negated theorem in CNF

• Operators: Resolution rule picks 2 clauses
and adds new clause

• Goal Test: Does KB contain the empty
clause?

• Search space of KB states

8/4/2016

10

Socrates’ Example

• KB: Socrates is a man and all men are mortal
Therefore Socrates is mortal

• Initial state

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates) (negation of theorem)

• Resolving (1) & (2) gives new state

4) is_mortal(socrates)

Resolving (3) & (4) gives new state

empty

8/4/2016

11

Aristotle’s Example: Search Space

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates)

4) is_mortal(socrates)

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates)

4) ¬is_man(socrates)

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates)

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates)

4) is_mortal(socrates)

5) False

1) is_man(socrates)

2) ¬is_man(X) ∨ is_mortal(X)

3) ¬is_mortal(socrates)

4) ¬is_man(socrates)

5) False

8/4/2016

12

Resolution Proof Tree (Proof 1)

8/4/2016

13

Resolution Proof Tree (Proof 2)

Read as:

You said that all men were mortal. That means that for all things X,
either X is not a man, or X is mortal. If we assume that Socrates is
not mortal, then, given your previous statement, this means
Socrates is not a man. But you said that Socrates is a man, which
means that our assumption was false, so Socrates must be mortal.

8/4/2016

14

Building Refutation resolution
proof tree

~P(w) v Q(w) ~Q(y) v S(y)

~P(w) v S(w) P(x) v R(x)

S(x) v R(x) ~ R(z) v S(z)

false

~S(A)S(x)

y/w

w/x

z/x

x/A

KB
~P(w) v Q(w)
~Q(y) v S(y)
~ R(z) v S(z)
P(x) v R(x)
~S(A)

8/4/2016

15

Conversion to CNF

• Everyone who loves all animals is loved by
someone:

∀x([∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)])

1. Eliminate biconditionals and implications

∀x([¬∀y (¬Animal(y) ∨ Loves(x,y))] ∨ [∃y Loves(y,x)])

2. Move ¬ inwards:”¬∀x p ≡ ∃x ¬p, ¬ ∃x p ≡ ∀x ¬p“

∀x ([∃y (¬(¬Animal(y) ∨ Loves(x,y)))] ∨ [∃y Loves(y,x)])

∀x ([∃y (¬¬Animal(y) ∧ ¬Loves(x,y))] ∨ [∃y Loves(y,x)])

∀x([∃y (Animal(y) ∧ ¬Loves(x,y))] ∨ [∃y Loves(y,x)])

8/4/2016

16

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀x([∃y Animal(y) ∧ ¬Loves(x,y)] ∨ [∃z Loves(z,x)])

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the enclosing
universally quantified variables:

∀x([Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x))

5. Drop universal quantifiers:

[Animal(F(x)) ∧ ¬Loves(x,F(x))] ∨ Loves(G(x),x)

6. Distribute ∨ over ∧ :

[Animal(F(x)) ∨ Loves(G(x),x)] ∧ [¬Loves(x,F(x)) ∨ Loves(G(x),x)]

8/4/2016

17

Example: KB

8/4/2016

18

Example: KB

8/4/2016

19

Example: (CNF)

8/4/2016

20

Example: Proof Tree

8/4/2016

21

Forward chaining
• FC: “Idea” fire any rule whose premises are satisfied in the

KB, add its conclusion to the KB, until query is found

• Deduce new facts from axioms

• Hopefully end up deducing the theorem statement

� Can take a long time: not using the goal to direct search

• Sound and complete for first-order definite clauses

• Datalog = first-order definite clauses + no functions

• FC terminates for Datalog in finite number of iterations

• May not terminate in general if α is not entailed

• This is unavoidable: entailment with definite clauses is
semidecidable

8/4/2016

22

Forward Chaining

• Use modus ponens to always derive all
consequences from new information

• To avoid looping and duplicated effort, must
prevent addition of a sentence to the KB which
is the same as one already present.

8/4/2016

23

Problems with Forward Chaining

• Inference can explode forward and may never
terminate.

Even(x) � Even(plus(x,2))

Integer(x) � Even(times(2,x))

Even(x) � Integer(x)

Even(2)

8/4/2016

24

Forward chaining algorithm

8/4/2016

25

Backward chaining
• BC: “Idea” work backwards from the query q in (p�q)

check if q is already known, or

prove by BC all premises of some rule concluding q

• Start with the conclusion and work backwards

– Hope to end up at the facts from KB

• Widely used for logic programming

• PROLOG is backward chaining

Remarks:

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal has already been proved true,
or has already failed

8/4/2016

26

Backward Chaining

• Start from a query or atomic sentence to be
proven and look for ways to prove it

• Query can contain variables

• Inference process should return all sets of
variables hat satisfy the query

• First try to answer query by unifying it to all
possible facts in the KB

• Next to tries to prove it using a rule whose
consequent unifies with the query and try to
prove all its antecedents recursively

8/4/2016

27

Backward chaining algorithm

