Proof Methods in FOL

Major Families:

- GMP
- Reduction
- Resolution
- Forward chaining
- Backward chaining

Some Other inference tools:

Entailment/ Unification/

Existential instantiation (EI)

 For any sentence α, variable ν, and constant symbol ν that does not appear elsewhere in the knowledge base:

$$\exists \boldsymbol{\nu}\alpha$$
 Subst($\{v/k\}, \alpha$)

• E.g., ∃x Crown(x) ∧ OnHead(x, John) yields:

provided C_1 is a new constant symbol, called a Skolem constant

Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is entailed by it:

$$\frac{\forall \, \mathbf{\nu} \alpha}{\text{Subst}(\{\text{v/g}\}, \, \alpha)}$$

for any variable ν and ground term g

E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
 King(John) ∧ Greedy(John) ⇒ Evil(John)
 King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
 King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

Resolution in PC

Propositional version.

$$\{a \lor b, \neg b \lor g\} \mid -a \lor g \ \mathbf{OR} \ \{\neg a \Rightarrow b, b \Rightarrow g\} \mid -\neg a \Rightarrow g$$

- Reasoning by cases OR transitivity of implication
- · First-order form
- For two literals p_k and q_l in two clauses

$$p_1 \lor p_2 \lor ... \lor p_n$$

 $q_1 \lor q_2 \lor ... \lor q_n$

such that $\theta = UNIFY(p_k, \neg q_l)$, derives

SUBST(
$$\theta$$
, $p_1 \vee p_2 \vee ... p_{k-1} \vee p_{k+1} \vee ... \vee p_n \vee q_1 \vee q_2 \vee ... q_{l-1} \vee q_{l+1} \vee ... \vee q_n$)

 For resolution to apply, all sentences must be in conjunctive normal form,

Conjunction Normal Form (CNF) in PC

We like to prove: $KB \models \alpha$ equivalent to : $KB \land \neg \alpha$ unsatifiable

We first rewrite $KB \land \neg \alpha$ into conjunctive normal form (CNF).

In theory

- Any KB can be converted into CNF.
- In fact, any KB can be converted into CNF-3, i.e. using clauses with at most 3 literals.

Example: Conversion to CNF in PC

$$\mathsf{B}_{1,1} \iff (\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1})$$

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$

negation:
$$\neg(\alpha \lor \beta) = \neg \alpha \land \neg \beta$$

 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$

4. Apply distributive law (\land over \lor) and flatten:

$$(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}) \wedge (\neg P_{1,2} \vee B_{1,1}) \wedge (\neg P_{2,1} \vee B_{1,1})$$

Resolution in PC

- 1. P
- 2. $P \rightarrow Q$ converted to $\sim P \vee Q$
- 3. ~ *Q*

Draw the resolution tree (actually an inverted tree). Every node is a clausal form and branches are intermediate inference steps.

Resolution Algorithm in PC

 $KB \models \alpha \text{ equivalent to}$

- The resolution algorithm tries to prove: $KB \land \neg \alpha$ unsatisfiable
- · Generate all new sentences from KB and the guery.
- One of two things can happen:
- 1. We find $P \land \neg P$ which is unsatisfiable. i.e. we can entail the query.
- 2. We find no contradiction: there is a model that satisfies the sentence $\textit{KB} \land \neg \alpha$

(non-trivial) and hence we cannot entail the guery.

Resolution as Search

Given a database in clausal normal form KB

Find a sequence of resolution steps from KB to the empty clauses

States: current cnf KB + new clauses

Operators: resolution

Initial state: KB + negated goal

Goal State: a database containing the empty

clause

Resolution Algorithm in FOPC

- 1) Convert sentences in the KB to CNF (clausal form)
- 2) Take the negation of the proposed query, convert it to CNF, and add it to the KB.
- 3) Repeatedly apply the resolution rule to derive new clauses.
- **4)** If the empty clause (False) is eventually derived, stop and conclude that the proposed theorem is true.

Procedure:

- √ Eliminate implications and biconditionals
- ✓ Move ¬ inward
- √Standardize variables
- ✓ Move quantifiers left
- ✓ Skolemize: replace each existentially quantified variable with a Skolem constant or Skolem function
- ✓ Distribute ∧ over ∨ to convert to conjunctions of clauses
- ✓ Convert clauses to implications if desired for readability

 $(\neg a \lor \neg b \lor c \lor d)$ To $a \lor b \Rightarrow c \lor d$

Conversion to CNF

Everyone who loves all animals is loved by someone:

```
\forall x ( [\forall y \; \textit{Animal}(y) \Rightarrow \textit{Loves}(x,y)] \Rightarrow [\exists y \; \textit{Loves}(y,x)])
1. Eliminate biconditionals and implications
\forall x ([\neg \forall y \; (\neg \textit{Animal}(y) \lor \textit{Loves}(x,y))] \lor [\exists y \; \textit{Loves}(y,x)])
```

2. Move \neg inwards:" $\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x \neg p$ "

```
\forall x ([\exists y (\neg(\neg \textit{Animal} y) \lor \textit{Loves}(x,y)))] \lor [\exists y \textit{Loves}(y,x)]) \\ \forall x ([\exists y (\neg\neg \textit{Animal}(y) \land \neg \textit{Loves}(x,y))] \lor [\exists y \textit{Loves}(y,x)]) \\ \forall x ([\exists y (\textit{Animal}(y) \land \neg \textit{Loves}(x,y))] \lor [\exists y \textit{Loves}(y,x)])
```

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

$$\forall x ([\exists y \; Animal(y) \land \neg Loves(x,y)] \lor [\exists z \; Loves(z,x)])$$

4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

$$\forall x ([Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x))$$

5. Drop universal quantifiers:

$$[Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$$

6. Distribute ∨ over ∧:

```
[Animal(F(x)) \lor Loves(G(x), x)] \land [\negLoves(x, F(x)) \lor Loves(G(x), x)]
```

Recall: Resolution in PC

• Resolution inference rule (for CNF):

where l_s and m_i are complementary literals.

E.g.,
$$\underline{P_{1,3} \vee P_{2,2}}, \quad \neg P_{2,2}$$

$$\underline{P_{1,3}}$$

Resolution is sound and complete for propositional logic

Resolution in FOL

• Full first-order version:

$$\frac{\textit{$\mathcal{L}_1 \lor \cdots \lor \textit{ℓ_k}$,} \qquad \textit{$m_1 \lor \cdots \lor \textit{m_n}$}}{(\textit{$\mathcal{L}_1 \lor \cdots \lor \textit{$\ell_{i-1} \lor \textit{$\ell_{i+1} \lor \cdots \lor \textit{$\ell_k} \lor \textit{$m_1 \lor \cdots \lor \textit{$m_{j-1} \lor \textit{$m_{j+1} \lor \cdots \lor \textit{m_n}$}$}}}}$$
 where Unify($\textit{$\ell_i$}$, $\neg \textit{$m_j$}$) = θ .

The two clauses are assumed to be standardized apart so that they share no variables.

with $\theta = \{x/Ken\}$

Empty Clause means False

- Resolution theorem proving ends
 - When the resolved clause has no literals (empty)
- This can only be because:
 - Two unit clauses were resolved
 - One was the negation of the other (after substitution)
 - Example: q(X) and $\neg q(X)$ or: p(X) and $\neg p(bob)$
- Hence if we see the empty clause
 - This was because there was an inconsistency
 - Hence the proof by refutation

Resolution as Search

- Initial State: Knowledge base (KB) of axioms and negated theorem in CNF
- Operators: Resolution rule picks 2 clauses and adds new clause
- Goal Test: Does KB contain the empty clause?
- Search space of KB states

Socrates' Example

- KB: Socrates is a man and all men are mortal Therefore Socrates is mortal
- Initial state
 - 1) is_man(socrates)
 - 2) \neg is_man(X) \vee is_mortal(X)
 - 3) ¬is_mortal(socrates) (negation of theorem)
- Resolving (1) & (2) gives new state
 - 4) is_mortal(socrates)Resolving (3) & (4) gives new state empty

Resolution Proof Tree (Proof 1)

Resolution Proof Tree (Proof 2)

Read as:

You said that all men were mortal. That means that for all things X, either X is not a man, or X is mortal. If we assume that Socrates is not mortal, then, given your previous statement, this means Socrates is not a man. But you said that Socrates **is** a man, which means that our assumption was false, so Socrates must be mortal.

Conversion to CNF

Everyone who loves all animals is loved by someone:

```
\forall x ( [\forall y \ \textit{Animal}(y) \Rightarrow \textit{Loves}(x,y)] \Rightarrow [\exists y \ \textit{Loves}(y,x)])
1. Eliminate biconditionals and implications
```

$$\forall x ([\neg \forall y \ (\neg \textit{Animal}(\textit{y}) \lor \textit{Loves}(\textit{x,y}))] \lor [\exists y \ \textit{Loves}(\textit{y,x})])$$

2. Move
$$\neg$$
 inwards:" $\neg \forall x \ p \equiv \exists x \ \neg p, \ \neg \ \exists x \ p \equiv \forall x \ \neg p$ "

$$\forall x ([\exists y (\neg(\neg \textit{Animal}(y) \lor \textit{Loves}(x,y)))] \lor [\exists y \textit{Loves}(y,x)])$$

$$\forall x ([\exists y (\neg \neg Animal(y) \land \neg Loves(x,y))] \lor [\exists y Loves(y,x)])$$

$$\forall x ([\exists y (Animal(y) \land \neg Loves(x,y))] \lor [\exists y Loves(y,x)])$$

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

 $\forall x ([\exists y \; \textit{Animal(y)} \land \neg \textit{Loves(x,y)}] \lor [\exists z \; \textit{Loves(z,x)}])$

4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:

 $\forall x ([Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x))$

5. Drop universal quantifiers:

 $[Animal(F(x)) \land \neg Loves(x,F(x))] \lor Loves(G(x),x)$

6. Distribute ∨ over ∧:

[Animal(F(x)) \lor Loves(G(x), x)] \land [\neg Loves(x, F(x)) \lor Loves(G(x), x)]

Example: KB

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna.

Did Curiosity kill the cat?

Example: KB

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna. Did Curiosity kill the cat?

A. $\exists x \ Dog(x) \land Owns(Jack, x)$

B. $\forall x \ (\exists y \ Dog(y) \land Owns(x, y)) \Rightarrow AnimalLover(x)$

C. $\forall x \ AnimalLover(x) \Rightarrow \forall y \ Animal(y) \Rightarrow \neg Kills(x, y)$

D. $Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna)$

E. Cat(Tuna)

 $F. \forall x \ Cat(x) \Rightarrow Animal(x)$

Example: (CNF)

```
A1. Dog(D)
```

A2. Owns(Jack, D)

B. $Dog(y) \land Owns(x, y) \Rightarrow AnimalLover(x)$

C. $AnimalLover(x) \land Animal(y) \land Kills(x, y) \Rightarrow False$

D. $Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna)$

E. Cat(Tuna)

 $F. Cat(x) \Rightarrow Animal(x)$

