Proof Methods in FOL

Major Families:

« GMP

 Reduction

« Resolution

 Forward chaining

« Backward chaining

Some Other inference tools:
Entailment/ Unification/

Existential instantiation (El)

» For any sentence a, variable ¥ and constant symbol Athat

does not appear elsewhere in the knowledge base:

Jdva
Subst({v/k}, a)

» E.g., 3x Cromri ¥y A Onflead x,Jof) yields:

Crowr{ C)) N Onffead C,Jolr)

provided C,is a new constant symbol, called a Skolem
constant




Universal instantiation (Ul)

» Every instantiation of a universally quantified sentence is
entailed by it:

_ Vva
Subst({v/g}, a)
for any variable vand ground term g

o E.Q., VX AIng X n Greea ¥y = Evi{ x) yields:

King Jof) n Greealf Jolr) — Evil Jolr)

Aing Rrchard n Greeal Richard — Evil Richard

King Father Joln)  Greeal Fathel Joln)) — Evil Fathef Jolr))

Resolution ;, p¢

« Propositional version.

{avb,-bvg}|-avgOR {-wa=b,b=g}|-ma=g
» Reasoning by cases OR transitivity of implication

* First-order form

» For two literals p, and q, in two clauses

P1VP2V... VP,
Qi1vQeVv...VvQ,
such that 8 =UNIFY(p,, = q)), derives
SUBSTO,p1VPoV o Pki VPt V - VPa VA VAo V oo QiV Qg V ...V Oy )

» Forresolution to apply, all sentences must be in conjunctive
normal form,




Conjunction Normal Form (CNF) ., pc

KB =«
equivalent to: KB A —a unsatifiable

We like to prove:

We first rewrite k8 A —a into conjunctive normal form (CNF).

literals

A “conjunction of disjunctions:/

(Av =B) A (B v —C v—D)

— —
Clause Clause

In theory

» Any KB can be converted into CNF.

* In fact, any KB can be converted into CNF-3, i.e. using clauses
with at most 3 literals.

Example: Conversion to CNF . o

B1,1 = (P1,2 \ P2,1)
1. Eliminate <, replacing a < B with (a = B)A(B = a).
(B1,1 = (P1,2 Vv P2,1)) A ((P1,2 v P2,1) = B1,1)

2. Eliminate =, replacing a = B with —av .
(_‘B1,1 v P1,2 v P2,1) A (_'(P1,2 v P2,1) v B1,1)

3. Move — inwards using de Morgan's rules and double-
negation: —(ov B)=—-ar—-8
(=B11V P12V Pyy) A((mPy2A =P, 1) v By )

4. Apply distributive law (A over v) and flatten:
(_‘B1,1 Vv P1,2 v P2,1) A (_'P1,2V B1,1) A (_‘P2,1 v B1,1)




1.

» Resolution ;, p¢

2. P—=Q convertedto ~PvQ

3.

~0
Draw the resolution tree (actually an inverted
tree). Every node is a clausal form and branches

are intermediate inference steps.
~Q ~PvQ

Resolution Algorithm ,, pc

KB |= a equivalent to
The resolution algorithm tries to prove: kg n —a unsatisfiable

Generate all new sentences from KB and the query.
One of two things can happen:

1. Wefind P A—=P which is unsatisfiable. i.e. we can entail
the query.

2. We find no contradiction: there is a model that satisfies the
sentence KBAr-a
(non-trivial) and hence we cannot entail the query.




Resolution as Search

Given a database in clausal normal form KB
Find a sequence of resolution steps from KB to the
empty clauses

States: current cnf KB + new clauses

Operators: resolution

Initial state: KB + negated goal

Goal State: a database containing the empty
clause

Resolution Algorithm in FOPC

1) Convert sentences in the KB to CNF (clausal form)

2) Take the negation of the proposed query, convert it to CNF,

and add it to the KB.

3) Repeatedly apply the resolution rule to derive new clauses.

4) If the empty clause (False) is eventually derived, stop and

conclude that the proposed theorem is true.

Procedure:

v'Eliminate implications and biconditionals

v'"Move — inward

v'Standardize variables

v'"Move quantifiers left

v'Skolemize: replace each existentially quantified variable with a
Skolem constant or Skolem function

v'Distribute A over v to convert to conjunctions of clauses

v'Convert clauses to implications if desired for readability
(rav—=bvcvd)To avb=>cvd




Conversion to CNF

» Everyone who loves all animals is loved by
someone:

VX( [Vy Amimaly) — Loves x| = [Iy Loves y;,H))
1. Eliminate biconditionals and implications
VX([-VyY (—Amimaly) v LoveS xp)] v [Iy Loves ;X))

2. Move = inwards:"=Vx p = 3x —p, —3Ix p = Vx —p*
VX ([3y (~(~Amimaly) v LoveSxp))] v [3y Loves ;X))
VX ([3y (——Amimaly) ~ —Loves x)))] v [y Loves ;4] )
VX( [3y (Amimal p) A ~LovesS x )] v [Ty Loves ;X)) )

Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

VX( [3y Arimal ) A —LovesS x )| v [z Loves z X))

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function of the enclosing
universally quantified variables:

VX( [Animal X)) n —LoveS x AN)] v Loves GX.H)

5. Drop universal quantifiers:

[Arimal AX) n —LoveS K AX)| v LoveS G X, X

6. Distribute v over A :

[Arimal AN) v LoveS G0, 0] A [~LoveSx,AX) v Loves G X, X]




Recall: Resolution ;, p¢

» Resolution inference rule (for CNF):

Ev... v i, myV ...V my,

Vo VgV gV VY My VY g Y g Vel Vg

where 4 and m are complementary literals.
EQ.Asv A, —Fs
A3

Resolution is sound and complete
for propositional logic

Resolution in FOL

® Full first-order version:
Ly, My N
(GV oV Ey v Eg Vv VR mg Y g Vg VoV mg)O
where Unify(£ —m) = 6.

The two clauses are assumed to be standardized apart so that they
share no variables.

» For example, AKX v Unhappy X
Rlcl Ker)
Unhapoy Ker

with 8 = {x/Ken}




Empty Clause means False

» Resolution theorem proving ends
— When the resolved clause has no literals (empty)
» This can only be because:

— Two unit clauses were resolved
» One was the negation of the other (after substitution)
— Example: q(X) and =q(X) or: p(X) and —p(bob)
* Hence if we see the empty clause
— This was because there was an inconsistency
— Hence the proof by refutation

Resolution as Search

Initial State: Knowledge base (KB) of axioms
and negated theorem in CNF

Operators: Resolution rule picks 2 clauses
and adds new clause

Goal Test: Does KB contain the empty
clause?

Search space of KB states




Socrates’ Example

o KB: Socrates /s a man and all men are morta/
Therefore Socrales /s morta/
* Initial state
1) is_man(socrates)
2) —is_man(X) v is_mortal(X)
3) -is_mortal(socrates) (negation of theorem)
» Resolving (1) & (2) gives new state
4) is_mortal(socrates)
Resolving (3) & (4) gives new state
empty

Aristotle’s Example: Search Space

1) is_man(socrates)
2) —is_man(X) v is_mortal(X)

3) —is_mortal(socrates) s
1) is_man(socrates) -
_ ) 1) is_man(socrates)
R) —is_man(X) v is_mortal(X) 2) -is_man(X) v is_mortal(X)
8) -is_mortal(socrates) 3) —is_mortal(socrates)
4) =is_man(socrates)

4) is mortal(socrates) 1
1) is_man(socrates) 1) is_man(socrates)

2) —is_man(X) v is_mortal(X) 2) —is_man(X) v is_mortal(X)
3) -is_mortal(socrates) 3) —is_mortal(socrates)
4) 4)
5) 5)

is_mortal(socrates) -is_man(socrates)
False False




Resolution Proof Tree (Proof 1)

1.15_man(socrates) 2.7 is_maniXlvis mortal(X) 3, = is_mortaliscorat
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Resolution Proof Tree (Proof 2)

1. is_man(socrates) 2.7 is_man(X) vis_maortal(X) 3. ~is_mortal{socrates)
~ \ e
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5. False
Read as:

You said that all men were mortal. That means that for all things X,
either X is not a man, or X is mortal. If we assume that Socrates is
not mortal, then, given your previous statement, this means
Socrates is not a man. But you said that Socrates Za man, which
means that our assumption was false, so Socrates must be mortal.




Building Refutation resolution
proof tree -

~P(w) v Q(w) ~Q(y) v S(y) ~R
yiw ~S(A

~P(w) v S(w) P(x) v R(x)

Conversion to CNF

» Everyone who loves all animals is loved by
someone:

VX( [Vy Amimaly) — LovesS xp)| = [Jy Loves y; X))
1. Eliminate biconditionals and implications
X([VyY (—Ammal y) v LovesS x )] v [Ty Loves ;X))

2. Move — inwards:"—Vx p = 3Ix —=p, = 3Ix p = Vx —p°
Vx By (n(—Amimaly) v LovesSxp))] v [3y Loves y;X] )
VX ([3y (——Amimal y) A ~LoveS xp))] v [Ty Loves yH)] )
VX( [3y (Amimaly) ~ —Loves x)))] v [Iy Loves y;H)] )




Conversion to CNF contd.

Standardize variables: each quantifier should use a different one

Vx( [By Amimadpy n —Loves x )] v [3z Loves z.1))

Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing
universally quantified variables:

VX( [Animal AX) n —LoveS x, AN)] v Loves GX.H)

Drop universal quantifiers:

[Arimaf RX) A —LovesS K, AX)| v LoveS G X,

Distribute v over A :

[Arimal A0) v LoveS G, 0] ~ [~ LoveSxAX) v Loves G X, X]

Example: KB

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?




Example: KB

Jack owns a dog.

Every dog owner is an animal lover.

No animal lover kills an animal.

Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?

A.3x Dog(x) A Owns(Jack,x)

B.¥x (3y Dog(y) A Owns(x,y)) = AnimalLover(x)
C.Vx AnimalLover(x) = Vy Animal(y) = —Kills(x,y)
D. Kills(Jack, Tuna) V Kills(Curiosity, Tuna)

E. Cat(Tuna)

E Vx Cat(x) = Animal(x)

Example: (CNF)

Al. Dog(D)

A2. Owns(Jack, D)

B. Dog(y) A Owns(x,y) = AnimalLover(x)

C. AnimalLover(x) A Animal(y) A Kills(x,y) = False
D. Kills(Jack, Tuna) V Kills(Curiosity, Tuna)

E. Cat(Tuna)

F. Cat(x) = Animal(x)




Example: Proof Tree

| D(M | Dog(v) N Owns(x,y) = AnimalLover(x) ‘ IAnimull_mcr(.r) A Animal(y) A Kills(x,y) = False
{v/D]
rOW'ns(x,D) = AnimalLover(x) | I Owns(Jack,D) I Cat(Tuna) Cat(x) = Animal(x)
{x/Jack}

Animal(Tuna)

AnimalLover(x) N Kills(x,Tuna) = False |

(AnimalLuver(‘/ack) |
[y/Tuna}

k Kills(Jack, Tuna] VKills('Curiu.\lryuTuna)J

{x/Jack]

Kills(Jack,Tuna) = Fulse

Kills(Curiosity, Tuna) > False ‘

{}

Kills(Jack, Tuna)




