A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using ∧ as the main connective with ∀:
- Ex:

 $\forall x \ At(x,CU) \land Smart(x)$ means "Everyone is at CU and everyone is smart"

Yet to say Everyone at CU is smart $\forall x \ At(x,CU) \Rightarrow Smart(x)$

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists :

 $\exists \textbf{\textit{x}} At(x,CU) \Rightarrow Smart(x)$ is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart $\exists x At(x,CU) \land Smart(x)$

Translating English to FOL

· Every gardener likes the sun.

```
(\forall x) gardener(x) => likes(x, Sun)
```

· You can fool some of the people all of the time.

```
(\exists x) person(x) ^ ((\forall t) time(t)) => can-fool(x,t))
```

You can fool all of the people some of the time.

```
(\forall x) \text{ person}(x) \Rightarrow ((\exists t) \text{ time}(t) ^ can-fool}(x,t))
```

· All purple mushrooms are poisonous.

```
(\forall x) (mushroom(x) ^ purple(x)) => poisonous(x)
```

No purple mushroom is poisonous.

```
\sim (\exists x) \text{ purple}(x) \land \text{mushroom}(x) \land \text{poisonous}(x)
or, equivalently,
(\forall x) \pmod{(x)} \land \text{purple}(x)) => \sim \text{poisonous}(x)
```

Inference in FOL chapter 9 in Russel

- $KB \mid_{i} \alpha$ = sentence α can be derived from KB by procedure i i.e. deriving sentences from other sentences
- Soundness: f is sound if whenever $KB \mid_{i} \alpha$, it is also true that $KB \models \alpha$
- i.e. derivations produce only entailed sentences (no wrong inferences, but maybe not all inferences)
- Completeness: /is complete if whenever KB = α, it is also true that KB = α
- i.e. derivations can produce all entailed sentences (all inferences can be made, but maybe some wrong extra ones as well)

Validity and satisfiability

- A sentence is valid if it is true in all models,
- e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is **satisfiable** if it is true in **some model** e.g., $A \lor B$, C

A sentence is **unsatisfiable** if it is true in **no models** e.g., $A \land \neg A$

Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable (there is no model for which KB=true and is false)

Proof Methods in FOL

Major Families:

- GMP
- Reduction
- Resolution
- Forward chaining
- Backward chaining

Some Other inference tools:

Entailment/ Unification/

Proof Methods in FOL

- GMP: Using the generalized form of Modus Ponense
- Reduction: Reduce all FOL sentences to propositional Calculus then use inference in propositional calculus
- Resolution Refutation
 - Negate goal
 - Convert all pieces of knowledge into clausal form (disjunction of literals)
 - See if contradiction indicated by null clause ☐ can be derived
- Forward chaining
 - Given P, $P \rightarrow Q$, to infer Q
 - P, match *L.H.S* of
 - Assert Q from R.H.S
- Backward chaining
 - Q, Match R.H.S of $P \rightarrow Q$
 - assert P
 - Check if P exists

Universal instantiation (UI)

 Every instantiation of a universally quantified sentence is entailed by it:

 $\forall \, \boldsymbol{\nu} \alpha$ Subst($\{v/g\}, \alpha$)

for any variable ν and ground term q

E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
 King(John) ∧ Greedy(John) ⇒ Evil(John)
 King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
 King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

Existential instantiation (EI)

 For any sentence α, variable ν, and constant symbol κthat does not appear elsewhere in the knowledge base:

$$\exists \nu \alpha$$

Subst($\{v/k\}, \alpha$)

• E.g., ∃x Crown(x) ∧ OnHead(x, John) yields:

provided C_7 is a new constant symbol, called a Skolem constant

Unification

- ∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
- We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\}$ works

• Unify(α,β) = θ if $\alpha\theta = \beta\theta$

p q		θ	
Knows(Jo	hn,x)	Knows(John,Jane)	
		Knows(y,OJ)	
Knows(Jo	hn,x)	Knows(y,Mother(y))	
Knows(Jo	hn,x)	Knows(x,OJ)	

Standardizing apart eliminates overlap of variables, e.g., Knows(z₁₇,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\}$ works

• Unify(α,β) = θ if $\alpha\theta = \beta\theta$

p	q	θ	
Knows(John,x)	Knows(John,Jane)	{x/Jane}}
Knows(John,x)	Knows(y,OJ)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,OJ)	

• Standardizing apart eliminates overlap of variables, e.g., Knows(z₁₇,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\}$ works

• Unify $(\alpha,\beta) = \theta$ if $\alpha\theta = \beta\theta$

р	q	θ	
Kı	nows(John,x)	Knows(John,Jane)	{x/Jane}}
Kı	nows(John,x)	Knows(y,OJ)	{x/OJ,y/John}}
Kı	nows(John,x)	Knows(y,Mother(y))	
Kı	nows(John,x)	Knows(x,OJ)	

Standardizing apart eliminates overlap of variables, e.g., Knows(z₁₇,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\}$ works

```
• Unify(\alpha,\beta) = \theta if \alpha\theta = \beta\theta p q \theta Knows(John,x) Knows(John,x) Knows(John,x) Knows(John,x) Knows(John,x) Knows(John,x) Knows(John,x) Knows(X,OJ) {x/Jane}} {x/Jane}} {x/Jane}} {x/Jane}} Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}} {fail}
```

• Standardizing apart eliminates overlap of variables, e.g., Knows(z₁₇,OJ)

Unification

- To unify Knows(John,x) and Knows(y,z),
 θ = {y/John, x/z } or θ = {y/John, x/John, z/John} or others...
- There are many possible unifiers for some atomic sentences. The first unifier is more general than the second.
- The UNIFY algorithm returns the most general unifier (MGU) that is unique up to renaming of variables. MGU makes the least commitment to variable values.

The Unification Algorithm

- •In order to match sentences in the KB, we need a routine.
- \bullet UNIFY(p,q) takes two atomic sentences and returns a substitution that makes them equivalent.

UNIFY(p,q)= θ where SUBST(θ ,p)=SUBST(θ ,q) θ is called a unifier.

The Unification Algorithm

```
function UNIFY-VAR(var, x, \theta) returns a substitution inputs: var, a variable x, any expression \theta, the substitution built up so far if \{var/val\} \in \theta then return UNIFY(val, x, \theta) else if \{x/val\} \in \theta then return UNIFY(var, val, \theta) else if OCCUR-CHECK?(var, x) then return failure else return add \{var/x\} to \theta
```

Inference Rules for Quantifiers

- Universal Elimination: "∀ να |- SUBST({v/q}, α)"
 - for any sentence, α, variable, *v, and ground term, g*
- ∀ x Study(x, AI) |- Study(Mary, AI)
- Existential Elimination: "∃v α |- SUBST({v/k},a)"

for any sentence, α , variable, ν , and constant symbol, k, that doesn't occur elsewhere in the KB (Skolem constant)

- $\exists x (Owns(Mary,x) \land Cat(x)) \mid Owns(Mary,Jusy) \land Cat(Jusy)$
- Existential Introduction: " $\alpha \mid -\exists \ v \ SUBST(\{g/v\}, \alpha)$ "

for any sentence, α , variable, v, that does not occur in α , and ground term, g, that does occur in α

Study(Mary, AI) |-∃x Study(x, AI)

Proof Example

- 1) \forall x,y(Parent(x,y) \land Male(x) \Rightarrow Father(x,y))
- 2) Parent(Tom,John)
- 3) Male(Tom) Using Universal Elimination from 1)
- 4) \forall y(Parent(Tom,y) \land Male(Tom) \Rightarrow Father(Tom,y))

Using Universal Elimination from 4)

- 5) Parent(Tom,John) \land Male(Tom) \Rightarrow Father(Tom,John)
 - Using And Introduction from 2) and 3)
- 6) Parent(Tom,John) ∧ Male(Tom)

Using Modes Ponens from 5) and 6)

7) Father(Tom, John)

Generalized Modus Ponens (GMP)

$$\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{q\theta}$$

where θ is a substitution such that for all $\ i \ SUBST(\theta,\,p_i') = SUBST(\theta,\,p_i)$

Ex.:

- 1) $\forall x,y(Parent(x,y) \land Male(x) \Rightarrow Father(x,y))$
- 2) Parent(Tom,John)
- 3) Male(Tom)
- q={x/Tom, y/John)
- 4) Father(Tom, John)

Generalized Modus Ponens (GMP)

- In order to Apply generalized Modus Ponens, all sentences in the KB must be in the form of **Horn Clauses**:
- where a clause is a disjunction of literals, because they can be rewritten as disjunctions with at most one non-negated literal.

$$\forall v_1, v_2, \dots, v_n \ (\ p_1 \land p_2 \land \dots \land p_n \Rightarrow q) \ \text{can be expressed as}$$

$$\forall \ v_1, v_2, \dots, v_n \neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n \lor q$$

- If we have exactly one definite clause, the sentence is called a definite clause
- Quantifiers can be dropped since all variables can be universally quantified by default.
- Many sentences can be transformed into Horn clauses, but not all (e.g. $P(x) \lor Q(x)$, and $\neg P(x)$)

Resolution in PC

· Propositional version.

$$\{a \lor b, \neg b \lor g\} \mid -a \lor g \ \mathbf{OR} \ \{\neg a \Rightarrow b, b \Rightarrow g\} \mid -\neg a \Rightarrow g$$

- · Reasoning by cases OR transitivity of implication
- · First-order form
- For two literals p_k and q_l in two clauses

$$p_1 \lor p_2 \lor ... \lor p_n$$

 $q_1 \lor q_2 \lor ... \lor q_n$

such that $\theta = UNIFY(p_k, \neg q_l)$, derives

$$SUBST(\theta, \, p_1 \lor p_2 \lor \dots \, p_{k-1} \lor p_{k+1} \lor \dots \lor p_n \lor q_1 \lor q_2 \lor \dots q_{l-1} \lor q_{l+1} \lor \dots \lor q_n \,)$$

 For resolution to apply, all sentences must be in conjunctive normal form,

Conjunction Normal Form (CNF) in PC

We like to prove:

$$KB \models \alpha$$

equivalent to : $KB \land \neg \alpha$ unsatifiable

We first rewrite $\mbox{\it KB} \wedge \neg \alpha$ into conjunctive normal form (CNF).

A "conjunction of disjunctions" literals $(A \vee \neg B) \wedge (B \vee \neg C \vee \neg D)$ Clause Clause

In theory

- Any KB can be converted into CNF.
- In fact, any KB can be converted into CNF-3, i.e. using clauses with at most 3 literals.

Example: Conversion to CNF in PC

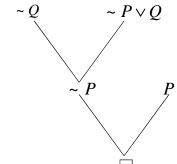
$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- 3. Move \neg inwards using de Morgan's rules and double-negation: $\neg(\alpha \lor \beta) = \neg\alpha \land \neg\beta$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- 4. Apply distributive law (\land over \lor) and flatten: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Resolution in PC

- 1. P
- 2. $P \rightarrow Q$ converted to $\sim P \vee Q$
- 3. **∼** *Q*

Draw the resolution tree (actually an inverted tree). Every node is a clausal form and branches are intermediate inference steps.



Resolution Algorithm in PC

 $KB \models \alpha \ equivalent \ to$

- The resolution algorithm tries to prove: $KB \land \neg \alpha$ unsatisfiable
- · Generate all new sentences from KB and the query.
- One of two things can happen:
- 1. We find $P \land \neg P$ which is unsatisfiable. i.e. we can entail the query.
- 2. We find no contradiction: there is a model that satisfies the sentence $\mathit{KB} \land \neg \alpha$

(non-trivial) and hence we cannot entail the query.