
4/27/2015

1

A common mistake to avoid

• Typically, ⇒ is the main connective with ∀

• Common mistake: using ∧ as the main connective
with ∀:

• Ex:

∀x At(x,CU) ∧ Smart(x)

means “Everyone is at CU and everyone is smart”

Yet to say Everyone at CU is smart

∀x At(x,CU) ⇒ Smart(x)

Another common mistake to avoid

• Typically, ∧ is the main connective with ∃

• Common mistake: using ⇒ as the main connective
with ∃:

∃x At(x,CU) ⇒ Smart(x)

is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart

∃x At(x,CU) ∧ Smart(x)

4/27/2015

2

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.

(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.

(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

• All purple mushrooms are poisonous.

(∀ x) (mushroom(x) ^ purple(x)) => poisonous(x)

• No purple mushroom is poisonous.

~(∃x) purple(x) ^ mushroom(x) ^ poisonous(x)
or, equivalently,

(∀x) (mushroom(x) ^ purple(x)) => ~poisonous(x)

Inference in FOL chapter 9 in Russel

• KB ├i α = sentence α can be derived from KB by procedure i

i.e. deriving sentences from other sentences

• Soundness: i is sound if whenever KB ├i α, it is also true that
KB╞ α

i.e. derivations produce only entailed sentences (no wrong
inferences, but maybe not all inferences)

• Completeness: i is complete if whenever KB╞ α, it is also
true that KB ├i α

i.e. derivations can produce all entailed sentences (all
inferences can be made, but maybe some wrong extra
ones as well)

4/27/2015

3

Validity and satisfiability
• A sentence is valid if it is true in all models,
• e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the following:
KB╞ α if and only if (KB⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

Satisfiability is connected to inference via the following:
KB╞ α if and only if (KB ∧¬α) is unsatisfiable
(there is no model for which KB=true and is false)

Proof Methods in FOL

Major Families:

• GMP

• Reduction

• Resolution

• Forward chaining

• Backward chaining

Some Other inference tools:

Entailment/ Unification/

4/27/2015

4

Proof Methods in FOL

• GMP: Using the generalized form of Modus Ponense

• Reduction: Reduce all FOL sentences to propositional Calculus
then use inference in propositional calculus

• Resolution – Refutation

– Negate goal

– Convert all pieces of knowledge into clausal form (disjunction of literals)

– See if contradiction indicated by null clause can be derived

• Forward chaining

– Given P, , to infer Q

– P, match L.H.S of

– Assert Q from R.H.S

• Backward chaining

– Q, Match R.H.S of

– assert P

– Check if P exists

QP →

QP →

Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is
entailed by it:

∀v α
Subst({v/g}, α)

for any variable v and ground term g

• E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

4/27/2015

5

Existential instantiation (EI)
• For any sentence α, variable v, and constant symbol k that

does not appear elsewhere in the knowledge base:

∃v α
Subst({v/k}, α)

• E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem
constant

Unification

• ∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

• We can get the inference immediately if we can find a substitution θ such
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ

p q θ

Knows(John,x) Knows(John,Jane)

Knows(John,x) Knows(y,OJ)

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ)

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

4/27/2015

6

Unification

• We can get the inference immediately if we can find a substitution θ such
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ)

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ)

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ)

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

4/27/2015

7

Unification

• We can get the inference immediately if we can find a substitution θ such
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}

Knows(John,x) Knows(x,OJ) {fail}

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• To unify Knows(John,x) and Knows(y,z),

θ = {y/John, x/z } or θ = {y/John, x/John, z/John} or
others…

• There are many possible unifiers for some atomic

sentences. The first unifier is more general than
the second.

• The UNIFY algorithm returns the most general
unifier (MGU) that is unique up to renaming of
variables. MGU makes the least commitment to
variable values.

4/27/2015

8

The Unification Algorithm
•In order to match sentences in the KB, we need a routine.
•UNIFY(p,q) takes two atomic sentences and returns a substitution
that makes them equivalent.
UNIFY(p,q)= θ where SUBST(θ,p)=SUBST(θ,q) θ is called a unifier.

The Unification Algorithm

4/27/2015

9

Inference Rules for Quantifiers
• Universal Elimination: "∀v α |- SUBST({v/g}, α)”

for any sentence, α, variable, v, and ground term, g

• ∀ x Study(x, AI) |- Study(Mary, AI)

• Existential Elimination: “∃v α |- SUBST({v/k},a)”

for any sentence, α, variable, v, and constant symbol, k, that doesn’t
occur elsewhere in the KB (Skolem constant)

• ∃x (Owns(Mary,x) ∧∧∧∧ Cat(x)) |- Owns(Mary,Jusy)∧∧∧∧ Cat(Jusy)

• Existential Introduction: “α |- ∃ v SUBST({g/v}, α)”

for any sentence, α, variable, v, that does not occur in α, and ground
term, g, that does occur in α

• Study(Mary, AI) |- ∃ x Study(x, AI)

Proof Example

1) ∀ x,y(Parent(x,y) ∧∧∧∧ Male(x) ⇒ Father(x,y))

2) Parent(Tom,John)

3) Male(Tom) Using Universal Elimination from 1)

4) ∀ y(Parent(Tom,y) ∧∧∧∧ Male(Tom) ⇒ Father(Tom,y))

Using Universal Elimination from 4)

5) Parent(Tom,John) ∧∧∧∧ Male(Tom) ⇒ Father(Tom,John)

Using And Introduction from 2) and 3)

6) Parent(Tom,John) ∧∧∧∧ Male(Tom)

Using Modes Ponens from 5) and 6)

7) Father(Tom,John)

4/27/2015

10

Generalized Modus Ponens (GMP)

p1', p2', … , pn', (p1 ∧ p2 ∧ … ∧ pn ⇒q)

qθ

where θ is a substitution such that for all i SUBST(θ, pi')=SUBST(θ, pi)

Ex.:

1) ∀ x,y(Parent(x,y) ∧ Male(x) ⇒ Father(x,y))

2) Parent(Tom,John)

3) Male(Tom)

q={x/Tom, y/John)

4) Father(Tom,John)

where pi'θ = pi θ for all i

• In order to Apply generalized Modus Ponens, all sentences in
the KB must be in the form of Horn Clauses:

• where a clause is a disjunction of literals, because they can be
rewritten as disjunctions with at most one non-negated literal.

∀v1, v2, … , vn (p1 ∧ p2 ∧ … ∧ pn ⇒q) can be expressed as

∀ v1, v2, … , vn ¬¬¬¬ p1 ∨∨∨∨ ¬¬¬¬ p2 ∨∨∨∨ … ∨∨∨∨ ¬¬¬¬ pn ∨∨∨∨ q

• If we have exactly one definite clause, the sentence is called a
definite clause

• Quantifiers can be dropped since all variables can beassumed to
be universally quantified by default.

• Many sentences can be transformed into Horn clauses, but not
all (e.g. P(x) ∨∨∨∨ Q(x), and ¬¬¬¬ P(x))

Generalized Modus Ponens (GMP)

4/27/2015

11

Resolution in PC

• Propositional version.

{a ∨∨∨∨ b, ¬¬¬¬b ∨∨∨∨ g} |- a ∨∨∨∨ g OR {¬¬¬¬ a ⇒ b, b ⇒ g} |- ¬¬¬¬ a ⇒ g

• Reasoning by cases OR transitivity of implication

• First-order form

• For two literals pk and ql in two clauses

p1 ∨∨∨∨ p2 ∨∨∨∨ … ∨∨∨∨ pn

q1 ∨∨∨∨ q2 ∨∨∨∨ … ∨∨∨∨ qn

such that θ =UNIFY(pk, ¬¬¬¬ ql), derives

SUBST(θ, p1 ∨∨∨∨ p2 ∨∨∨∨ … pk-1 ∨∨∨∨ pk+1 ∨∨∨∨ … ∨∨∨∨ pn ∨∨∨∨ q1 ∨∨∨∨ q2 ∨∨∨∨ … ql-1 ∨∨∨∨ ql+1 ∨∨∨∨ …∨∨∨∨ qn)

• For resolution to apply, all sentences must be in conjunctive
normal form,

Conjunction Normal Form (CNF) in PC

We first rewrite into conjunctive normal form (CNF).

|

:

KB

equivalent to KB unsatifiable

α

α

=

∧ ¬
We like to prove:

KB α∧ ¬

A “conjunction of disjunctions”

(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

ClauseClause

literals

In theory
• Any KB can be converted into CNF.
• In fact, any KB can be converted into CNF-3, i.e. using clauses
with at most 3 literals.

4/27/2015

12

Example: Conversion to CNF in PC

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β)∧(β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-
negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributive law (∧ over ∨) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

()α β α β¬ ∨ = ¬ ∧ ¬

1. P

2. converted to

3.

Draw the resolution tree (actually an inverted

tree). Every node is a clausal form and branches

are intermediate inference steps.

QP → QP ∨~

Q~

Q~

QP ∨~

P~ P

Resolution in PC

4/27/2015

13

• The resolution algorithm tries to prove:

• Generate all new sentences from KB and the query.
• One of two things can happen:

1. We find which is unsatisfiable. i.e. we can entail
the query.

2. We find no contradiction: there is a model that satisfies the
sentence

(non-trivial) and hence we cannot entail the query.

Resolution Algorithm in PC

|KB equivalent to

KB unsatisfiable

α

α

=

∧ ¬

P P∧ ¬

KB α∧ ¬

