A common mistake to avoid

» Typically, = is the main connective with V

« Common mistake: using A as the main connective
with V:

 Ex:
Vx At(x,CU) A Smart(x)
means “Everyone is at CU and everyone is smart”

Yet to say Everyone at CU is smart
vx At(x,CU) = Smart(x)

Another common mistake to avoid

» Typically, A is the main connective with 3

» Common mistake: using = as the main connective
with 3:

JxAt(x,CU) = Smart(x)
is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart
JxAt(x,CU) A Smart(x)




Translating English to FOL

» Every gardener likes the sun.

(Vx) gardener (x) => likes (x,Sun)
* You can fool some of the people all of the time.

(dx) person(x) ~ ((Vt) time(t)) => can-fool(x,t))
* You can fool all of the people some of the time.

(Vx) person(x) => ((Jdt) time(t) * can-fool(x,t))
e All purple mushrooms are poisonous.

(V x) (mushroom(x) * purple(x)) => poisonous (x)
¢ No purple mushroom is poisonous.

~(dx) purple(x) * mushroom(x) * poisonous (x)
or, equivalently,

(Vx) (mushroom(x) * purple(x)) => ~poisonous (x)

Inference in FOL chapter 9 in Russel

s AP |-i a = sentence a can be derived from AZby procedure 7

i.e. deriving sentences from other sentences

« Soundness: /is sound if whenever AZ | q, it is also true that
ABE a

i.e. derivations produce only entailed sentences (770 wrorng
mnrerences, but maybe rnor all mnrerences)

» Completeness: 7is complete if whenever /(B|= a, it is also
true that AZ | a

i.e. derivations can produce all entailed sentences (a4
mnrerernces carn be maae, but maybe some wrong exra
ornes as wef))




Validity and satisfiability

* A sentence is valid if it is true in all models,
e e.g., Tme,Av-A, A=A (AA(A=>B))=B

Validity is connected to inference via the following:
V.74 |= a if and only if (AZ= q) is valid

A sentence is satisfiable if it is true in some model
e.g.,AvB, C

A sentence is unsatisfiable if it is true in no models
e.g., A=A

Satisfiability is connected to inference via the following:
AB [ a if and only if (ABA—a) is unsatisfiable
(there is no model for which KB=true and s false)

Proof Methods in FOL

Major Families:

« GMP

» Reduction

» Resolution

 Forward chaining

« Backward chaining

Some Other inference tools:
Entailment/ Unification/




Proof Methods in FOL

GMP: Using the generalized form of Modus Ponense

Reduction: Reduce all FOL sentences to propositional Calculus
then use inference in propositional calculus
Resolution — Refutation
— Negate goal
— Convert all pieces of knowledge into clausal form (disjunction of literals)
— See if contradiction indicated by null clause [] can be derived
Forward chaining
— Given P, P — O, to infer Q
— P, match L.H.S of
— Assert Q from R.H.S
Backward chaining
— Q,Match RH.Sof P—= Q0

— assert P
— Check if P exists

Universal instantiation (Ul)

» Every instantiation of a universally quantified sentence is
entailed by it:

Vv va
Subst({v/g}, a)
for any variable vand ground term g

» E.g., VX Alngx n Greealf X) = Evi{x) yields:

King Jolr) n Greealf Jolr) = Evil Jolr)

King Richardl n Greealf Richard) = £Vl Richard

King Father Joln)) n Greealf Fathek Jolr)) = EVK Fathek Jolr))




Existential instantiation (El)

 For any sentence a, variable ¥ and constant symbol Athat
does not appear elsewhere in the knowledge base:

dva
Subst({v/k}, a)

o E.Q.,3xCromrk X A Onfead x,Jolv) yields:
Cromr{ C)) N OnHead C,Jolr)

provided £, is a new constant symbol, called a Skolem
constant

Unification
o X KX ~ Greea Xy = Evilx

» We can get the inference immediately if we can find a substitution 6 such
that King(x) and Greedy(x) match King(John) and Greedy(y)

8 = {x/John,y/John} works

 Unify(q,B) = 0 if a® = 6

p q e
Knows(John,x) | Knows(John,Jane)
Knows(John,x) | Knows(y,0J)
Knows(John,x) | Knows(y,Mother(y)
Knows(John,x) | Knows(x,0J)

Standardizing apart eliminates overlap of variables, e.g., Knows(z,,,0J)




Unification

» We can get the inference immediately if we can find a substitution 6 such
that King(x) and Greedy(x) match King(John)and Greedy(y)

8 = {x/John,y/John} works

* Unify(a,B) = 6 if a8 = 6
p q 0

Knows(John,x) |Knows{John,Jane) |{x/Jane}}
Knows(John,x) | Knows(y,0J)
Knows(John,x) | Knows(y,Mother(y)
Knows(John,x) | Knows(x,0J)

- Standardizing apart eliminates overlap of variables, e.g., Knows(z;,,0])

Unification

* We can get the inference immediately if we can find a substitution 8 such
that King(x) and Greedy(x) match King(John) and Greedy(y)

8 = {x/John,y/John} works

* Unify(a,B) =0 if ad = 6

p q 6
Knows(John,x) |Knows(John,Jane) |{x/Jane}}
Knows(John,x) | Knows(y,0J) {x/0J,y/John}}

Knows(John,x) | Knows(y,Mother(y)
Knows(John,x) | Knows(x,01])

+ Standardizing apart eliminates overlap of variables, e.g., Knows(z,,,03)




Unification

» We can get the inference immediately if we can find a substitution 6 such
that King(x) and Greedy(x) match King(John)and Greedy(y)

8 = {x/John,y/John} works

e Unify(a,B) =6 if a® = 36
p q )
Knows(John,x) |Knows(John,Jane) |{x/Jane}}
Knows(John,x) | Knows(y,0J) {x/0J,y/John}}
Knows(John,x) | Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) | Knows(x,0J) {fail}

- Standardizing apart eliminates overlap of variables, e.g., Knows(z;,,0])

Unification

» To unify Knows(John,x)and Knows(y,z),

8 = {y/John, x/z } or 8 = {y/John, x/John, z/John} or
others...

» There are many possible unifiers for some atomic
sentences. The first unifier is more general than
the second.

« The UNIFY algorithm returns the most general
unifier (MGU) that is unique up to renaming of
variables. MGU makes the least commitment to
variable values.




The Unification Algorithm

eIn order to match sentences in the KB, we need a routine.
*UNIFY(p,q) takes two atomic sentences and returns a substitution
that makes them equivalent.

UNIFY(p,q)= 6 where SUBST(8,p)=SUBST(8,q) 6 is called a unifier.

function UNIFY(z, y, 6) returns a substitution to make z and y identical
inputs: z, a variable, constant, list, or compound
i, a variable, constant, list, or compound
B, the substitution built up so far

if # = failure then return failure
else if 2 = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y,0)
else if VARIABLE?(y) then return UNIFY-VAR(y, z. 6)
else if CompouND?(z) and CoMPOUND?(y) then
return UNIFY(ARGS[z], ARGS[y], UN1FY(OPp[], Opr[y], 8))
else if LisT?(z) and LisT?(y) then
return UNIFY(REST[z], REST[y], UNIFY(FIRST[2], FIRST[Y], A))
else return failure

The Unification Algorithm

function UNIFY-VAR(var, z,6) returns a substitution

inputs: var, a variable

T, any expression

f, the substitution built up so far
if {var/val} € 6 then return UNIFY(val, z,6)
else if {z/val} € € then return UNIFY(var, val, 6)
else if OCCUR-CHECK?(var, z) then return failure
else return add {var/z} to #




Inference Rules for Quantifiers

* Universal Elimination: "V va |- SUBST({v/g}, a)”
for any sentence, a, variable, v, and ground term, g
e VX Study(x, AI) |- Study(Mary, AlI)

« Existential Elimination: "3v a |- SUBST({v/k},a)”

for any sentence, a, variable, v, and constant symbol, k, that doesn't
occur elsewhere in the KB (Skolem constant)

« 3dx (Owns(Mary,x) A Cat(x)) |- Owns(Mary,Jusy)a Cat(Jusy)

» Existential Introduction: “a |- 9v SUBST({g/V}, a)”

for any sentence, a, variable, v, that does not occur in a, and ground
term, g, that does occur in a

« Study(Mary, AI) |- 3 x Study(x, AI)

Proof Example

1) ¥ x,y(Parent(x,y) A Male(x) = Father(x,y))
2) Parent(Tom,John)
3) Male(Tom) Using Universal Elimination from 1)
4) v y(Parent(Tom,y) A Male(Tom) = Father(Tom,y))

Using Universal Elimination from 4)
5) Parent(Tom,John) A Male(Tom) = Father(Tom,John)

Using And Introduction from 2) and 3)

6) Parent(Tom,John) A Male(Tom)

Using Modes Ponens from 5) and 6)
7) Father(Tom,John)




Generalized Modus Ponens (GMP)

P1s P2y - Pos (P A P2 A .. APy =0)

(e[S}
where 0 is a substitution such that for all i SUBST(8, p;')=SUBST(8, p;)
Ex.:

1) V x,y(Parent(x,y) A Male(x) = Father(x,y))
2) Parent(Tom,John)
3) Male(Tom)

g={x/Tom, y/John)

4) Father(Tom,John)

Generalized Modus Ponens (GMP)

« In order to Apply generalized Modus Ponens, all sentences in
the KB must be in the form of Horn Clauses:

« where a clause is a disjunction of literals, because they can be
rewritten as disjunctions with at most one non-negated literal.

VVi, Vo, oo s Vo (Py A P2 A ... AP, =() Can be expressed as
VV1,V2, ,Vn_|p1 V_|p2V V_Ipnvq

 If we have exactly one definite clause, the sentence is called a
definite clause

« Quantifiers can be dropped since all variables can beassumed to
be universally quantified by default.

« Many sentences can be transformed into Horn clauses, but not
all (e.g. P(x) v Q(x), and = P(x))




Resolution ;, p¢

» Propositional version.

{avb,-bvg}|-avgOR {—ma=Db,b=g}|-ma=g
» Reasoning by cases OR transitivity of implication

* First-order form

» Fortwo literals p, and q, in two clauses

P1VP2V... VP,
divQoVv...v(Q,
such that 8 =UNIFY(p,, = q)), derives
SUBSTO,p1VPoV e Pki VPiet V - VPR VA VAo V ... Qi VQy V ...V Oy )

» Forresolution to apply, all sentences must be in conjunctive
normal form,

Conjunction Normal Form (CNF) . pc

KBl=«o
equivalent to: KB n—a unsatifiable

We like to prove:

We first rewrite k2 A —q¢ into conjunctive normal form (CNF).

literals

A “conjunction of disjurwtk)rwj/

(Av —B) A (B v —C v—D)

— ~—
Clause Clause

In theory

» Any KB can be converted into CNF.

* In fact, any KB can be converted into CNF-3, i.e. using clauses
with at most 3 literals.




Example: Conversion to CNF ., o

Bi1 © (Pi2vPyy)
1. Eliminate <, replacing a < 3 with (a = B)A(B = a).
(Bi,1= (P12V Poq)) A((P1ov Pai) =Byy)

2. Eliminate =, replacing a = 8 with —av .
(=Bi11 VP12V Py A(=(Py2v Pgy) v By y)

3. Move - inwards using de Morgan's rules and double-
negation: —(gv f)=-a -8
(_'B‘],‘] \% P112 Vv P2’1) A ((—|P112/\ —|P211) \Y B1’1)

4. Apply distributive law (A over v) and flatten:
(_‘B1,1 Vv P1,2 Vv P2,1) A (_'P1,2V B1,1) A (_‘P2,1 Vv B1,1)

Resolution ;, p¢

. P
. P—Q convertedto ~PvQ
3. o~ Q

Draw the resolution tree (actually an inverted
tree). Every node is a clausal form and branches

are intermediate inference steps.
~0 ~PvQ




N

Resolution Algorithm ;, pc

KB |= o equivalent to
The resolution algorithm tries to prove: g . o unsatisfiable

Generate all new sentences from KB and the query.
One of two things can happen:

. Wefind P A—=P which is unsatisfiable. i.e. we can entail
the query.

. We find no contradiction: there is a model that satisfies the
sentence KB -«
(non-trivial) and hence we cannot entail the query.




