Satisfiability

» A sentence is satisfiable if it is true under some
interpretation (i.e. it has a model), otherwise the
sentence is unsatisfiable.

» A sentence is valid if and only if its negation is
unsatisfiable.

» Therefore, algorithms for either validity or satisfiability
checking are useful for logical inference.

« If there are n propositional symbols in a sentence, then

we must check 27 rows for validity

 Satisfiability is NP-complete, i.e. there is no
polynomial-time algorithm to solve.

» Yet, many problems can be solved very quickly.

Pros and cons of propositional logic

v Propositional logic is declarative:

pieces of syntax correspond to facts
v" Propositional logic is compositional:

meaning of A * B is derived from meaning of A and B
v Meaning in propositional logic is context-independent

* (unlike natural language, where meaning depends on
context)

» Propositional logic has very limited expressive power
* (unlike natural language)

First-order logic
* First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
— Properties of objects that distinguish them from other objects
— Relations that hold among sets of objects

— Functions, which are a subset of relations where there is only
one “value” for any given “input”

Ex:Objects: Students, lectures, companies, cars ...

— Relations: Brother-of, bigger-than, outside, part-of, has-color,
occurs-after, owns, visits, precedes, ...

— Properties: blue, oval, even, large, ...

— Functions: father-of, best-friend, second-half, one-more-than

A common mistake to avoid

» Typically, = is the main connective with V

« Common mistake: using A as the main connective
with V:

* Ex:
Vvx At(x,CU) A Smart(x)
means “Everyone is at CU and everyone is smart”

Yet to say Everyone at CU is smart
vx At(x,CU) = Smart(x)

Another common mistake to avoid

» Typically, A is the main connective with 3

« Common mistake: using = as the main connective
with 3:

JxAt(x,CU) = Smart(x)
is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart
JxAt(x,CU) A Smart(x)

Examples of FOPC

» Brothers are siblings
Vx, Yy Brotherx,y)=> Siblingix,y)

* One's mother is one's female parent
v'm, V¢ Motherc)= m < (Female(im) ~ Parenlim,c))

» “Sibling” is symmetric
Vx, Yy Siblingixy) < Sihngy,x)

Translating English to FOL

» Every gardener likes the sun.

(Vx) gardener (x) => likes(x,Sun)

Translating English to FOL

e Every gardener likes the sun.

(Vx) gardener(x) => likes(x,Sun)

* You can fool some of the people all of the time.

(dx) person(x) ~ ((Vt) time(t)) => can-—-fool(x,t))

Translating English to FOL

» Every gardener likes the sun.

(Vx) gardener (x) => likes(x,Sun)
* You can fool some of the people all of the time.

(dx) person(x) ~ ((Vt) time(t)) => can—-fool(x,t))
* You can fool all of the people some of the time.

(Vx) person(x) => ((Jdt) time(t) * can-fool(x,t))

Translating English to FOL

e Every gardener likes the sun.

(Vx) gardener(x) => likes(x,Sun)
* You can fool some of the people all of the time.

(dx) person(x) ~ ((Vt) time(t)) => can-—-fool(x,t))
* You can fool all of the people some of the time.

(Vx) person(x) => ((Jt) time(t) * can-fool(x,t))
» All purple mushrooms are poisonous.

(V x) (mushroom(x) * purple(x)) => poisonous (x)

Translating English to FOL

Every gardener likes the sun.

(Vx) gardener (x) => likes(x,Sun)

You can fool some of the people all of the time.

(dx) person(x) ~ ((Vt) time(t)) => can—-fool(x,t))
You can fool all of the people some of the time.

(Vx) person(x) => ((Jdt) time(t) * can-fool(x,t))
All purple mushrooms are poisonous.

(V x) (mushroom(x) * purple(x)) => poisonous (x)
No purple mushroom is poisonous.

~(dx) purple(x) * mushroom(x) *

or, equivalently,

poisonous (x)

(Vx) (mushroom(x) * purple(x)) => ~poisonous (x)

Translating English to FOL

There are exactly two purple mushrooms.

(d%x) (3 y) mushroom(x) * purple(x) * mushroom(y) *
purple(y) * ~(x=y) ~ (Vz) (mushroom(z) * purple(z))
=> ((x=2) v (y=2))

Inference in FOL

s AP |-i a = sentence a can be derived from AZBby procedure 7
i.e. deriving sentences from other sentences

« Soundness: 7 is sound if whenever AZ | q, it is also true
that ABF o

i.e. derivations produce only entailed sentences (o wrorng
mrerences, but maybe ot al irerernces)

» Completeness: 7is complete if whenever /(B|= a, it is also
true that A% | a

i.e. derivations can produce all entailed sentences (a2/
mrerences carn be maak, but maybe sorme wrong exrra
ornes as wef))

Validity and satisfiability

» A sentence is valid if it is true in all models,
e eg., 7me,Av-A, A=A, (AA(A=B) =B

Validity is connected to inference via the following:
V.74 |= a if and only if (AZ—= a) is valid

A sentence is satisfiable if it is true in some model
e.g,AvB, C

A sentence is unsatisfiable if it is true in no models
e.g., Ar—A

Satisfiability is connected to inference via the following:
AB k a if and only if (ABA—a) is unsatisfiable
(there is no model for which KB=true and s false)

Proof Methods in FOL

Major Families:

« GMP

 Reduction

« Resolution

 Forward chaining

« Backward chaining

Some Other inference tools:
Entailment/ Unification/

Proof Methods in FOL

GMP: Using the generalized form of Modus Ponense

Reduction: Reduce all FOL sentences to propositional Calculus
then use inference in propositional calculus
Resolution — Refutation
— Negate goal
— Convert all pieces of knowledge into clausal form (disjunction of literals)
— See if contradiction indicated by null clause [] can be derived

Forward chaining
— GivenP, P = Q, to infer Q
— P, match L.H.S of
— Assert Q from RH.S
Backward chaining
— Q,Match RH.Sof P— Q0
— assert P
— Check if P exists

Universal instantiation (Ul)

» Every instantiation of a universally quantified sentence is
entailed by it:

_ Vva
Subst({v/g}, a)
for any variable vand ground term g

o E.Q., VX AIng X n Greeaf x) = Evi{ X yields:

King Jof) n Greealf Jolr) — Evil Jolr)

Aing Rrchard n Greeal Richard — Evil Richard

King Father Joln) Greeal Fathel Joln)) — Evil Fathef Jolr))

Existential instantiation (El)

» For any sentence a, variable ¥ and constant symbol Athat
does not appear elsewhere in the knowledge base:

Jdva
Subst({v/k}, a)

o E.Q.,dx Cromrk Xy A OnHead x,Jofn) yields:
Crowrd C)) N OnHead C,Jol)

provided C,is a new constant symbol, called a Skolem
constant

Vx Ang 3 ~ Greeai Xy = Evilx)

Unification

We can get the inference immediately if we can find a substitution 6 such
that King(x) and Greedy(x) match King(John)and Greedy(y)

8 = {x/John,y/John} works

p

Unify(a,B) = 6 if a8 = 6

q

Knows(John,x)
Knows(John,x)
Knows(John,x)
Knows(John,x)

Knows(John,Jane)
Knows(y,03)
Knows(y,Mother(y)
Knows(x,0J)

Standardizing apart eliminates overlap of variables, e.g., Knows(z;;,0J)

Unification

We can get the inference immediately if we can find a substitution 6 such
that King(x) and Greedy(x) match King(John) and Greedy(y)

8 = {x/John,y/John} works

p

Unify(a,B) = 0 if ad = 6

q

¢

Knows(John,X)
Knows(John,x)
Knows(John,x)
Knows(John,x)

Knows(John,Jane)
Knows(y,03)
Knows(y,Mother(y)
Knows(x,0J)

IX/Janesy

Standardizing apart eliminates overlap of variables, e.g., Knows(z;;,0J)

Unification

We can get the inference immediately if we can find a substitution 6 such
that King(x) and Greedy(x) match King(John)and Greedy(y)

8 = {x/John,y/John} works

p

Unify(a,B) = 6 if a8 = 6

q

0

Knows(John,x)
Knows(John,x)
Knows(John,x)
Knows(John,x)

Knows(John,Jane)
Knows(y,0J)
Knows(y,Mother(y)
Knows(x,03)

{x/Jane}}
{x/0J,y/Iohn}}

Standardizing apart eliminates overlap of variables, e.g., Knows(z,,,0J)

Unification

We can get the inference immediately if we can find a substitution 6 such
that King(x) and Greedy(x) match King(John) and Greedy(y)

8 = {x/John,y/John} works

p

Unify(a,B) = 0 if ad = 6

q

]

Knows(John,x)
Knows(John,x)
Knows(John,x)
Knows(John,x)

Knows(John,Jane)
Knows(y,03)
Knows(y,Mother(y)
Knows(x,0J)

{x/Jane}
{x/0J,y/John}
{y/John,x/Mother(John)}

Standardizing apart eliminates overlap of variables, e.g., Knows(z;;,0J)

Unification

» We can get the inference immediately if we can find a substitution 6 such
that King(x) and Greedy(x) match King(John)and Greedy(y)

8 = {x/John,y/John} works

e Unify(a,B) =6 if a® = 36
p q 6
Knows(John,x) | Knows(John,Jane) |{x/Jane}
Knows(John,x) | Knows(y,0J) {x/0J,y/John}
Knows(John,x) | Knows(y,Mother(y)) {y/John,x/Mother(John)}
Knows(John,x) | Knows(x,0J) {fail}

- Standardizing apart eliminates overlap of variables, e.g., Knows(z;,,0])

Unification

» To unify Knows(John,x)and Knows(y,z),

8 = {y/John, x/z } or 8 = {y/John, x/John, z/John} or
others...

» There are many possible unifiers for some atomic
sentences. The first unifier is more general than
the second.

« The UNIFY algorithm returns the most general
unifier (MGU) that is unique up to renaming of
variables. MGU makes the least commitment to
variable values.

The Unification Algorithm

eIn order to match sentences in the KB, we need a routine.
*UNIFY(p,q) takes two atomic sentences and returns a substitution
that makes them equivalent.

UNIFY(p,q)= 6 where SUBST(8,p)=SUBST(8,q) 6 is called a unifier.

function UNIFY(z, y, 6) returns a substitution to make z and y identical
inputs: z, a variable, constant, list, or compound
i, a variable, constant, list, or compound
B, the substitution built up so far

if # = failure then return failure
else if 2 = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y,0)
else if VARIABLE?(y) then return UNIFY-VAR(y, z. 6)
else if CompouND?(z) and CoMPOUND?(y) then
return UNIFY(ARGS[z], ARGS[y], UN1FY(OPp[], Opr[y], 8))
else if LisT?(z) and LisT?(y) then
return UNIFY(REST[z], REST[y], UNIFY(FIRST[2], FIRST[Y], A))
else return failure

The Unification Algorithm

function UNIFY-VAR(var, z,6) returns a substitution

inputs: var, a variable

T, any expression

f, the substitution built up so far
if {var/val} € 6 then return UNIFY(val, z,6)
else if {z/val} € € then return UNIFY(var, val, 6)
else if OCCUR-CHECK?(var, z) then return failure
else return add {var/z} to #

