Satisfiability

- A sentence is **satisfiable** if it is true under some interpretation (i.e. it has a model), otherwise the sentence is **unsatisfiable**.
- A sentence is **valid** if and only if its negation is unsatisfiable.
- Therefore, algorithms for either validity or satisfiability checking are useful for logical inference.
- If there are *n propositional symbols in a sentence, then* we must check 2ⁿ rows for validity
- **Satisfiability is** NP-complete, i.e. there is no polynomial-time algorithm to solve.
- Yet, many problems can be solved very quickly.

Pros and cons of propositional logic

- ✓ Propositional logic is declarative: pieces of syntax correspond to facts
- ✓ Propositional logic is compositional: meaning of A ^ B is derived from meaning of A and B
- Meaning in propositional logic is context-independent
- (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power
- (unlike natural language)

First-order logic

- First-order logic (FOL) models the world in terms of
 - Objects, which are things with individual identities
 - Properties of objects that distinguish them from other objects
 - Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one "value" for any given "input"

Ex:Objects: Students, lectures, companies, cars ...

- Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, second-half, one-more-than

...

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using ∧ as the main connective with ∀:
- Ex:

 $\forall x \ At(x,CU) \land Smart(x)$ means "Everyone is at CU and everyone is smart"

Yet to say Everyone at CU is smart

 $\forall x \ At(x,CU) \Rightarrow Smart(x)$

Another common mistake to avoid

- Typically, ∧ is the main connective with ∃
- Common mistake: using ⇒ as the main connective with ∃:

 $\exists x At(x,CU) \Rightarrow Smart(x)$

is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart $\exists x At(x,CU) \land Smart(x)$

Examples of FOPC

• Brothers are siblings

 $\forall x, \forall y \; \textit{Brother}(x,y) => \textit{Sibling}(x,y)$

· One's mother is one's female parent

 $\forall m, \forall c \; \textit{Mother(c)} = m \Leftrightarrow \textit{(Female(m)} \land \textit{Parent(m,c))}$

• "Sibling" is symmetric

 $\forall x, \forall y \; \textit{Sibling(x,y)} \Leftrightarrow \textit{Sibling(y,x)}$

Translating English to FOL

• Every gardener likes the sun.

```
(\forall x) gardener(x) => likes(x,Sun)
```

Translating English to FOL

• Every gardener likes the sun.

```
(\forall x) \text{ gardener}(x) \Rightarrow \text{likes}(x, \text{Sun})
```

• You can fool some of the people all of the time.

```
(\exists x) person(x) ^ ((\forall t) time(t)) => can-fool(x,t))
```

Translating English to FOL

• Every gardener likes the sun.

```
(\forall x) gardener(x) => likes(x,Sun)
```

• You can fool some of the people all of the time.

```
(\exists x) person(x) ^ ((\forall t) time(t)) => can-fool(x,t))
```

• You can fool all of the people some of the time.

```
(\forall x) \text{ person}(x) \Rightarrow ((\exists t) \text{ time}(t) ^ can-fool}(x,t))
```

Translating English to FOL

· Every gardener likes the sun.

```
(\forall x) gardener(x) => likes(x,Sun)
```

· You can fool some of the people all of the time.

```
(\exists x) person(x) ^ ((\forall t) time(t)) => can-fool(x,t))
```

• You can fool all of the people some of the time.

```
(\forall x) \text{ person}(x) \Rightarrow ((\exists t) \text{ time}(t) ^ can-fool}(x,t))
```

• All purple mushrooms are poisonous.

```
(\forall x) \pmod{(x)} \land purple(x)) \Rightarrow poisonous(x)
```

Translating English to FOL

· Every gardener likes the sun.

```
(\forall x) gardener(x) => likes(x,Sun)
```

You can fool some of the people all of the time.

```
(\exists x) person(x) ^ ((\forall t) time(t)) => can-fool(x,t))
```

· You can fool all of the people some of the time.

```
(\forall x) person(x) \Rightarrow ((\exists t) time(t) ^ can-fool(x,t))
```

• All purple mushrooms are poisonous.

```
(\forall x) (mushroom(x) ^ purple(x)) => poisonous(x)
```

No purple mushroom is poisonous.

```
~ (\exists x) purple(x) ^ mushroom(x) ^ poisonous(x) or, equivalently,
```

```
(\forall x) (mushroom(x) ^ purple(x)) => ~poisonous(x)
```

Translating English to FOL

• There are exactly two purple mushrooms.

```
(\exists x) (\exists y) mushroom(x) ^ purple(x) ^ mushroom(y) ^ purple(y) ^ ~(x=y) ^ (\forall z) (mushroom(z) ^ purple(z)) => ((x=z) v (y=z))
```

Inference in FOL

- $KB \mid_{i} \alpha$ = sentence α can be derived from KB by procedure i
- i.e. deriving sentences from other sentences
- Soundness: / is sound if whenever $KB \mid_{i} \alpha$, it is also true that $KB \mid_{i} \alpha$
- i.e. derivations produce only entailed sentences (no wrong inferences, but maybe not all inferences)
- Completeness: / is complete if whenever KB = α, it is also true that KB = α
- i.e. derivations can produce all entailed sentences (all inferences can be made, but maybe some wrong extra ones as well)

Validity and satisfiability

- A sentence is valid if it is true in all models.
- e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is **satisfiable** if it is true in **some model** e.g., $A \lor B$, C

A sentence is **unsatisfiable** if it is true in **no models** e.g., $A \land \neg A$

Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable (there is no model for which KB=true and is false)

Proof Methods in FOL

Major Families:

- GMP
- Reduction
- Resolution
- Forward chaining
- Backward chaining

Some Other inference tools:

Entailment/ Unification/

Proof Methods in FOL

- GMP: Using the generalized form of Modus Ponense
- Reduction: Reduce all FOL sentences to propositional Calculus then use inference in propositional calculus
- Resolution Refutation
 - Negate goal
 - Convert all pieces of knowledge into clausal form (disjunction of literals)
 - See if contradiction indicated by null clause ☐ can be derived
- Forward chaining
 - Given P, $P \rightarrow Q$, to infer Q
 - P, match *L.H.S* of
 - Assert Q from R.H.S
- · Backward chaining
 - Q, Match R.H.S of $P \rightarrow Q$
 - assert P
 - Check if P exists

Universal instantiation (UI)

 Every instantiation of a universally quantified sentence is entailed by it:

 $\frac{\forall \, \mathbf{\nu} \alpha}{\text{Subst}(\{\text{v/g}\}, \, \alpha)}$

for any variable ${m
u}$ and ground term ${m g}$

E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:
 King(John) ∧ Greedy(John) ⇒ Evil(John)
 King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
 King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

Existential instantiation (EI)

 For any sentence α, variable ν, and constant symbol k that does not appear elsewhere in the knowledge base:

∃ **ν**α
Subst({v/k}, α)

• E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown C1 \ OnHead C , John

provided C_7 is a new constant symbol, called a Skolem constant

Unification

- ∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
- We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\}$ works

• Unify(α,β) = θ if $\alpha\theta$ = $\beta\theta$ p q θ Knows(John,x) Knows(John,Jane) Knows(John,x) Knows(y,OJ) Knows(John,x) Knows(y,Mother(y)) Knows(John,x) Knows(x,OJ)

Standardizing apart eliminates overlap of variables, e.g., Knows(z₁₇,OJ)

Unification

 We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\}$ works

• Unify(α,β) = θ if $\alpha\theta = \beta\theta$

p q	θ		
Knows(John,x)	Knows(John,Jane)	{x/Jane}}	
Knows(John,x)	Knows(y,OJ)		
Knows(John,x)	Knows(y,Mother(y))		
Knows(John,x)	Knows(x,OJ)		

Standardizing apart eliminates overlap of variables, e.g., Knows(z₁₇,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\}$ works

• Unify(α,β) = θ if $\alpha\theta = \beta\theta$

		•	
p q		θ	
Knows(Jo	hn,x)	Knows(John,Jane)	{x/Jane}}
Knows(Jo	hn,x)	Knows(y,OJ)	{x/OJ,y/John}}
Knows(Jo	hn,x)	Knows(y, Mother(y))	
Knows(Jo	hn,x)	Knows(x,OJ)	

Standardizing apart eliminates overlap of variables, e.g., Knows(z₁₇,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\}$ works

• Unify(α,β) = θ if $\alpha\theta = \beta\theta$

p q	θ	
Knows(John,x)	Knows(John,Jane)	{x/Jane}
Knows(John,x)	Knows(y,OJ)	{x/OJ,y/John}
Knows(John,x)	Knows(y,Mother(y))	{y/John,x/Mother(John)}
Knows(John,x)	Knows(x,OJ)	

Standardizing apart eliminates overlap of variables, e.g., Knows(z₁₇,OJ)

Unification

 We can get the inference immediately if we can find a substitution θ such that King(x) and Greedy(x) match King(John) and Greedy(y)

 $\theta = \{x/John, y/John\}$ works

```
• Unify(\alpha,\beta) = \theta if \alpha\theta = \beta\theta p q \theta Knows(John,x) Knows(John,x) Knows(John,x) Knows(John,x) Knows(John,x) Knows(John,x) Knows(John,x) Knows(John,x) Knows(X,OJ) {y/John,x/Mother(John)} Knows(John,x) Knows(X,OJ) {fail}
```

Standardizing apart eliminates overlap of variables, e.g., Knows(z₁₇,OJ)

Unification

- To unify Knows(John,x) and Knows(y,z),
 θ = {y/John, x/z } or θ = {y/John, x/John, z/John} or others...
- There are many possible unifiers for some atomic sentences. The first unifier is more general than the second.
- The UNIFY algorithm returns the most general unifier (MGU) that is unique up to renaming of variables. MGU makes the least commitment to variable values.

The Unification Algorithm

- •In order to match sentences in the KB, we need a routine.
- \bullet UNIFY(p,q) takes two atomic sentences and returns a substitution that makes them equivalent.

UNIFY(p,q)= θ where SUBST(θ ,p)=SUBST(θ ,q) θ is called a unifier.

The Unification Algorithm

```
function UNIFY-VAR(var, x, \theta) returns a substitution inputs: var, a variable x, any expression \theta, the substitution built up so far if \{var/val\} \in \theta then return UNIFY(val, x, \theta) else if \{x/val\} \in \theta then return UNIFY(var, val, \theta) else if OCCUR-CHECK?(var, x) then return failure else return add \{var/x\} to \theta
```