
4/11/2019

1

Satisfiability
• A sentence is satisfiable if it is true under some 

interpretation (i.e. it has a model), otherwise the 

sentence is unsatisfiable.

• A sentence is valid if and only if its negation is 

unsatisfiable.

• Therefore, algorithms for either validity or satisfiability

checking are useful for logical inference.

• If there are n propositional symbols in a sentence, then 
we must check 2n rows  for validity

• Satisfiability is NP-complete, i.e. there is no 

polynomial-time algorithm to solve.

• Yet, many problems can be solved very quickly.

Pros and cons of propositional logic

� Propositional logic is declarative: 

pieces of syntax correspond to facts

� Propositional logic is compositional: 

meaning of A ^ B is derived from meaning of A and B

� Meaning in propositional logic is context-independent

• (unlike natural language, where meaning depends on 
context)

� Propositional logic has very limited expressive power

• (unlike natural language)



4/11/2019

2

First-order logic
• First-order logic (FOL) models the world in terms of 

– Objects, which are things with individual identities

– Properties of objects that distinguish them from other objects

– Relations that hold among sets of objects

– Functions, which are a subset of relations where there is only 

one “value” for any given “input”

Ex:Objects: Students, lectures, companies, cars ... 

– Relations: Brother-of, bigger-than, outside, part-of, has-color, 

occurs-after, owns, visits, precedes, ... 

– Properties: blue, oval, even, large, ... 

– Functions: father-of, best-friend, second-half, one-more-than 

... 

A common mistake to avoid

• Typically, ⇒ is the main connective with ∀

• Common mistake: using ∧ as the main connective 
with ∀:

• Ex:

∀x At(x,CU) ∧ Smart(x)

means “Everyone is at CU and everyone is smart”

Yet to say Everyone at CU is smart

∀x At(x,CU) ⇒ Smart(x)



4/11/2019

3

Another common mistake to avoid

• Typically, ∧ is the main connective with ∃

• Common mistake: using ⇒ as the main connective 
with ∃:

∃x At(x,CU) ⇒ Smart(x)

is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart

∃x At(x,CU)  ∧ Smart(x)

Examples of FOPC

• Brothers are siblings

∀x, ∀y Brother(x,y) => Sibling(x,y)

• One's mother is one's female parent

∀m, ∀c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))

• “Sibling” is symmetric

∀x, ∀y Sibling(x,y) ⇔ Sibling(y,x)

Some may be considered axioms, others as theorems which can be derived 
from the axioms.



4/11/2019

4

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.

(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))



4/11/2019

5

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.

(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.

(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.

(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.

(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

• All purple mushrooms are poisonous.

(∀ x) (mushroom(x) ^ purple(x)) => poisonous(x)



4/11/2019

6

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.

(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.

(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

• All purple mushrooms are poisonous.

(∀ x) (mushroom(x) ^ purple(x)) => poisonous(x)

• No purple mushroom is poisonous.

~(∃x) purple(x) ^ mushroom(x) ^ poisonous(x) 

or, equivalently,

(∀x) (mushroom(x) ^ purple(x)) => ~poisonous(x) 

Translating English to FOL
• There are exactly two purple mushrooms.

(∃x)(∃ y) mushroom(x) ^ purple(x) ^ mushroom(y) ^ 

purple(y) ^ ~(x=y) ^ (∀z) (mushroom(z) ^ purple(z)) 
=> ((x=z) v (y=z))



4/11/2019

7

Inference in FOL

• KB ├i α = sentence α can be derived from KB by procedure i

i.e. deriving sentences from other sentences

• Soundness: i is sound if whenever KB ├i α, it is also true 
that KB╞ α

i.e. derivations produce only entailed sentences (no wrong 
inferences, but maybe not all inferences)

• Completeness: i is complete if whenever KB╞ α, it is also 
true that KB ├i α 

i.e. derivations can produce all entailed sentences (all 
inferences can be made, but maybe some wrong extra 
ones as well)

Validity and satisfiability
• A sentence is valid if it is true in all models,
• e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the following:
KB╞ α if and only if (KB⇒ α) is valid

A sentence is satisfiable if it is true in some model

e.g., A∨ B, C

A sentence is unsatisfiable if it is true in no models

e.g., A∧¬A

Satisfiability is connected to inference via the following:
KB╞ α if and only if (KB ∧¬α) is unsatisfiable
(there is no model for which KB=true and      is false) 



4/11/2019

8

Proof Methods in FOL

Major Families: 

• GMP

• Reduction

• Resolution

• Forward chaining

• Backward chaining

Some Other inference tools:

Entailment/ Unification/

Proof Methods in FOL

• GMP: Using the generalized form of Modus Ponense

• Reduction:  Reduce all FOL sentences to propositional Calculus 
then use inference in propositional calculus

• Resolution – Refutation

– Negate goal

– Convert all pieces of knowledge into clausal form (disjunction of literals)

– See if contradiction indicated by null clause        can be derived

• Forward chaining

– Given P, , to infer Q

– P, match L.H.S of 

– Assert Q from R.H.S

• Backward chaining

– Q, Match R.H.S of

– assert P

– Check if P exists

QP →

QP →



4/11/2019

9

Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is 
entailed by it:

∀v α
Subst({v/g}, α)

for any variable v and ground term g

• E.g., ∀x King(x) ∧ Greedy(x) ⇒ Evil(x) yields:

King(John) ∧ Greedy(John) ⇒ Evil(John)

King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

King(Father(John)) ∧ Greedy(Father(John)) ⇒ Evil(Father(John))

Existential instantiation (EI)
• For any sentence α, variable v, and constant symbol k that 

does not appear elsewhere in the knowledge base:

∃v α
Subst({v/k}, α)

• E.g., ∃x Crown(x) ∧ OnHead(x,John) yields:

Crown(C1) ∧ OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem
constant



4/11/2019

10

Unification

• ∀x King(x) ∧ Greedy(x) ⇒ Evil(x)

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) 

Knows(John,x) Knows(y,OJ) 

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) 

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)



4/11/2019

11

Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)



4/11/2019

12

Unification

• We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}

Knows(John,x) Knows(x,OJ) {fail}

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

Unification

• To unify Knows(John,x) and Knows(y,z),

θ = {y/John, x/z } or θ = {y/John, x/John, z/John} or 
others…

• There are many possible unifiers for some atomic 

sentences. The first unifier is more general than 
the second.

• The UNIFY algorithm returns the most general 
unifier (MGU) that is unique up to renaming of 
variables. MGU makes the least commitment to 
variable values.



4/11/2019

13

The Unification Algorithm
•In order to match sentences in the KB, we need a routine.
•UNIFY(p,q) takes two atomic sentences and returns a substitution 
that makes them equivalent.
UNIFY(p,q)= θ where SUBST(θ,p)=SUBST(θ,q) θ is called a unifier.

The Unification Algorithm


