
4/20/2015

1

Propositional logic is a weak language

� Hard to identify “individuals.” Ex. Mary, 3

� Can’t directly talk about properties of individuals or

relations between individuals. Ex. “Bill is tall”

� Generalizations, patterns, regularities can’t easily be

represented. Ex. all triangles have 3 sides

• First-Order Logic (abbreviated FOL or FOPC) is

expressive enough to concisely represent this kind of

situation.

– FOL adds relations, variables, and quantifiers, e.g.,

• “Every elephant is gray”: ∀ x (elephant(x) → gray(x))

• “There is a white elephant”: ∃ x (elephant(x) ^ white(x))

Logical equivalence in PC
• Two sentences are logically equivalent iff true in the same

models: α ≡ ß iff α╞ β and β╞ α
• EXamples:

4/20/2015

2

First-order logic
• First-order logic (FOL) models the world in terms of

– Objects, which are things with individual identities

– Properties of objects that distinguish them from other objects

– Relations that hold among sets of objects

– Functions, which are a subset of relations where there is only

one “value” for any given “input”

Ex:Objects: Students, lectures, companies, cars ...

– Relations: Brother-of, bigger-than, outside, part-of, has-color,

occurs-after, owns, visits, precedes, ...

– Properties: blue, oval, even, large, ...

– Functions: father-of, best-friend, second-half, one-more-than

...

FOL Syntax

• Variable symbols

– E.g., x, y, John

• Connectives: ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, ⇒⇒⇒⇒

– Quantifiers

– Universal ∀x

– Existential ∃x

4/20/2015

3

Sentence � Atomicsentence

| (Sentence Connective Sentence)

| Quantifier Variable,. . . Sentence

| >Sentence

AtomicSentence � Predicate(Term, . . .)

| (Term = Term

Term -� Function(Term, . . .)

I Constant

| Variable

Connective � ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, ⇒⇒⇒⇒

Quantifier � ∀, ∃

Constant � A (XI (John 1 . . .

Variable � a | x | s | . . .

Predicate � Before…

Function � Mother | …

Syntax of First-order logic

Atomic Sentences
• Propositions are represented by a predicate applied to a tuple
of terms. A predicate represents a property of or relation
between terms that can be true or false:

• Brother(John, Fred), Left-of(Square1, Square2),
GreaterThan(plus(1,1), plus(0,1))

• Sentences in logic state facts that are true or false.

• In FOL properties and n-ary relations do express that:

LargerThan(2,3) is false. Brother(Mary,Pete) is false.

• Note: Functions do not state facts and form no sentence:
Brother(Pete) refers to the object John (his brother) and is
neither true nor false.

• Brother(Pete,Brother(Pete)) is True.

Binary relation Function

4/20/2015

4

Truth in first-order logic

• Sentences are true with respect to a model and an
interpretation

• Model contains objects (domain elements) and relations
among them

• Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

• An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn

are in the relation referred to by predicate

Entailment

• Entailment means that one thing follows from
another:

KB ╞ α
Knowledge base KB entails sentence α if and only if

α is true in all worlds where KB is true

– E.g., the KB containing “the Greens won” and “the Reds
won” entails “Either the Greens or the reds won“

– E.g., x+y = 4 entails 4 = x+y

– Entailment is a relationship between sentences (i.e.,
syntax) that is based on semantics

– entailment: necessary truth of one sentence given
another

4/20/2015

5

Models

• Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)

– E.g. KB = Greens won and Reds won

α = Greens won

• Think of KB and α as collections of

constraints and of models m as

possible states. M(KB) are the solutions

to KB and M(α) the solutions to α.

Then, KB ╞ α when all solutions to

KB are also solutions to α.

Nested Quantifiers
• Combinations of universal and existential quantification
are possible:

(,) (,)

(,) (,)

(,) (,)

(,) (,)

, { }

x y Father x y y x Father x y

x y Father x y y x Father x y

x y Father x y y x Father x y

x y Father x y y x Father x y

x y All people

∀ ∀ ≡ ∀ ∀

∃ ∃ ≡ ∃ ∃

∀ ∃ ≠ ∃ ∀

∃ ∀ ≠ ∀ ∃

∈

Binary relation:
“x is a father of y”.

4/20/2015

6

A common mistake to avoid

• Typically, ⇒ is the main connective with ∀

• Common mistake: using ∧ as the main connective
with ∀:

• Ex:

∀x At(x,CU) ∧ Smart(x)

means “Everyone is at CU and everyone is smart”

Yet to say Everyone at CU is smart

∀x At(x,CU) ⇒ Smart(x)

Another common mistake to avoid

• Typically, ∧ is the main connective with ∃

• Common mistake: using ⇒ as the main connective
with ∃:

∃x At(x,CU) ⇒ Smart(x)

is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart

∃x At(x,CU) ∧ Smart(x)

4/20/2015

7

Properties of quantifiers
∀x ∀y is the same as ∀y ∀x
∃x ∃y is the same as ∃y ∃x

∃x ∀y is not the same as ∀y ∃x
∃x ∀y Loves(x,y)

– “There is a person who loves everyone in the world”
∀y ∃x Loves(x,y)

– “Everyone in the world is loved by at least one person”

• Quantifier duality: each can be expressed using the other
Exp. Negation

∀x Likes(x,IceCream) ∃x ¬Likes(x,IceCream)
∃x Likes(x,Broccoli) ∀x ¬Likes(x,Broccoli)

Equality
Equality:

term1 = term2 is true under a given interpretation if and only

if term1 and term2 refer to the same object

FOPC can include equality as a primitive predicate or require

it to be as identity relation

Equal(x,y) or x=y

Examples:

to say “that Mary is taking two courses”, you need to insure

that x,y are different

∃x ∃y (takes(Mary,x) ^ takes (Mary,y) ^ ~ (x=y))

To say “Everyone has exactly one father”

∀x ∃y father(y,x) ^ ∀z father(z,x) � y=z

4/20/2015

8

Higher Order Logic

• FOPC is called first order because it allows quantifiers to

rang only over objects (terms).

∀x, ∀y [x=y or x>y or y>x]

• Second-Order Logic allows quantifiers to range over

predicates and functions as well

∀f, ∀g [f=g <=> (∀x f(x)=g(x))]

• Third-Order Logic allows quantifiers to range over

predicates of predicates,.. etc

Examples of FOPC

• Brothers are siblings

∀x, ∀y Brother(x,y) => Sibling(x,y)

• One's mother is one's female parent

∀m, ∀c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))

• “Sibling” is symmetric

∀x, ∀y Sibling(x,y) ⇔ Sibling(y,x)

Some may be considered axioms, others as theorems which can be derived
from the axioms.

4/20/2015

9

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.

(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

4/20/2015

10

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.

(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.

(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.

(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.

(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

• All purple mushrooms are poisonous.

(∀ x) (mushroom(x) ^ purple(x)) => poisonous(x)

4/20/2015

11

Translating English to FOL
• Every gardener likes the sun.

(∀x) gardener(x) => likes(x,Sun)

• You can fool some of the people all of the time.

(∃x) person(x) ^ ((∀t) time(t)) => can-fool(x,t))

• You can fool all of the people some of the time.

(∀x) person(x) => ((∃t) time(t) ^ can-fool(x,t))

• All purple mushrooms are poisonous.

(∀ x) (mushroom(x) ^ purple(x)) => poisonous(x)

• No purple mushroom is poisonous.

~(∃x) purple(x) ^ mushroom(x) ^ poisonous(x)

or, equivalently,

(∀x) (mushroom(x) ^ purple(x)) => ~poisonous(x)

Translating English to FOL
• There are exactly two purple mushrooms.

(∃x)(∃ y) mushroom(x) ^ purple(x) ^ mushroom(y) ^

purple(y) ^ ~(x=y) ^ (∀z) (mushroom(z) ^ purple(z))
=> ((x=z) v (y=z))

4/20/2015

12

Inference in FOL chapter 9 in Russel

• KB ├i α = sentence α can be derived from KB by procedure i

i.e. deriving sentences from other sentences

• Soundness: i is sound if whenever KB ├i α, it is also true that
KB╞ α

i.e. derivations produce only entailed sentences (no wrong
inferences, but maybe not all inferences)

• Completeness: i is complete if whenever KB╞ α, it is also
true that KB ├i α

i.e. derivations can produce all entailed sentences (all
inferences can be made, but maybe some wrong extra
ones as well)

Validity and satisfiability
• A sentence is valid if it is true in all models,
• e.g., True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B

Validity is connected to inference via the following:
KB╞ α if and only if (KB⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A∧¬A

Satisfiability is connected to inference via the following:
KB╞ α if and only if (KB ∧¬α) is unsatisfiable
(there is no model for which KB=true and is false)

4/20/2015

13

Proof Methods in FOL

Major Families:

• GMP

• Reduction

• Resolution

• Forward chaining

• Backward chaining

Some Other inference tools:

Entailment/ Unification/

Proof Methods in FOL

• GMP: Using the generalized form of Modus Ponense

• Reduction: Reduce all FOL sentences to propositional Calculus
then use inference in propositional calculus

• Resolution – Refutation

– Negate goal

– Convert all pieces of knowledge into clausal form (disjunction of literals)

– See if contradiction indicated by null clause can be derived

• Forward chaining

– Given P, , to infer Q

– P, match L.H.S of

– Assert Q from R.H.S

• Backward chaining

– Q, Match R.H.S of

– assert P

– Check if P exists

QP →

QP →

