Propositional logic is a weak language

» Hard to identify “individuals.” Ex. Mary, 3

= Can't directly talk about properties of individuals or
relations between individuals. Ex. “Bill is tall”

= Generalizations, patterns, regularities can’t easily be
represented. Ex. all triangles have 3 sides

 First-Order Logic (abbreviated FOL or FOPC) is
expressive enough to concisely represent this kind of
situation.

— FOL adds relations, variables, and quantifiers, e.g.,
» “Every elephant is gray”: Vv x (elephant(x) — gray(x))

» “There is a white elephant”: 3 x (elephant(x) ~ white(x))

Logical equivalence in PC

» Two sentences are logically equivalent iff true in the same
models:a = BiffafBand Bfa

—a A—3) de Morgan
(aAB)V (aAy)) distributivity of A over V
(aVB)A(aVqy)) distributivity of VV over A

(@A (BV
(@V (B A

« EXamples:
(A B) = (BAa) commutativity of A
(aVPB) = (fVa) commutativity of V
(aAB)YAY) = (aA(BA7y)) associativity of A
(Vv pB)Vy) = (aV(BVy)) assodativity of V
—(—a) = a double-negation elimination
(@ = B) = (=8 = —n) contraposition
(@ = B) = (~a Vv) implication elimination
(@ & fB) = ((a = B)A (B = «)) Dbiconditional elimination
“lanp) =
) =
) =
) =

(=

(

() A

(v) de Morgan
(a\/ﬁ (=

7)) = (

7)) = (

First-order logic
* First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
— Properties of objects that distinguish them from other objects
— Relations that hold among sets of objects

— Functions, which are a subset of relations where there is only
one “value” for any given “input”

Ex:Objects: Students, lectures, companies, cars ...

— Relations: Brother-of, bigger-than, outside, part-of, has-color,
occurs-after, owns, visits, precedes, ...

— Properties: blue, oval, even, large, ...

— Functions: father-of, best-friend, second-half, one-more-than

FOL Syntax

» Variable symbols
- E.g., x, y, John
» Connectives: —, A, v, =
— Quantifiers
— Universal vx
— Existential 3x

Syntax of First-order logic

Serrternce > Alomicserternce

/ (Senterrce Connective Senternce)

| Quantiier Variable,. . . Senterce

/>Senternce
AlormicSerterice > Predcate(Termm, . . .)

| (7erm= Temn
Term--> Function(Term, . . .)
| Constant
| Variable

Comrective> —, A, v, =
Quantiter > v, 3
Constant > A(Xl (Jof ...
Variable > a| x|s|...
Predfcate > Befsore...
Furrction > Mother| ...

Atomic Sentences

 Propositions are represented by a predicate applied to a tuple
of terms. A predicate represents a property of or relation
between terms that can be true or false:

» Brother(John, Fred), Left-of(Squarel, Square2),
GreaterThan(plus(1,1), plus(0,1))

« Sentences in logic state facts that are true or false.
« In FOL properties and n-ary relations do express that:
LargerThan(2,3) is false. Brother(Mary,Pete) is false.

» Note: Functions do not state facts and form no sentence:
Brother(Pete) refers to the object John (his brother) and is
neither true nor false.

 Brother(Pete,Brother(Pete)) is True.

I

Binary relation Function

Truth in first-order logic

« Sentences are true with respect to a model and an
interpretation

» Model contains objects (domain elements) and relations
among them

 Interpretation specifies referents for
constant symbols — objects

predicate symbols — relations

function symbols — functional relations

 An atomic sentence predicate(term,,...,term,) is true
iff the objects referred to by term,,...,term,
are in the relation referred to by predicate

Entailment

» Entailment means that one thing follows from
another:
KB Fa
Knowledge base AZentails sentence a if and only if
a is true in all worlds where ABis true

- E.g., the KB containing “the Greens won” and “the Reds
won” entails “Either the Greens or the reds won*

- E.g., x+y =4 entails 4 = x+y

— Entailment is a relationship between sentences (i.e.,
syntax) that is based on semantics

— entailment: necessary truth of one sentence given
another

Models

» Logicians typically think in terms of models, which are formally
structured worlds with respect to which truth can be evaluated

» We say s7is a model of a sentence a if ais true in /77
* Ma)is the set of all models of a
« Then KB F a iff MAB) M)

- E.g. AB= Greens won and Reds won
a = Greens won

MO0

» Think of KB and a as collections of
constraints and of models m as
possible states. M(KB) are the solutions
to KB and M(a) the solutions to a.
Then, KB k a when all solutions to

KB are also solutions to a.

Nested Quantifiers

« Combinations of universal and existential quantification
are possible:

VxVy Father(x,y) = VyVx Father(x,y)
dx3y Father(x,y) = Iy3ax Father(x,y)
Vx3y Father(x,y) = yNx Father(x,y)
dxVy Father(x,y) # Vy3x Father(x,y)
x,y € {All people}

A common mistake to avoid

» Typically, = is the main connective with V

« Common mistake: using A as the main connective
with V:

 Ex:
Vx At(x,CU) A Smart(x)
means “Everyone is at CU and everyone is smart”

Yet to say Everyone at CU is smart
vx At(x,CU) = Smart(x)

Another common mistake to avoid

» Typically, A is the main connective with 3

» Common mistake: using = as the main connective
with 3:

JxAt(x,CU) = Smart(x)
is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart
JxAt(x,CU) A Smart(x)

Properties of quantifiers

Vx Vy is the same as Vy Vx
Jx Jy is the same as Jy 3Ix

3x Vy is not the same as Vy 3x
Ix Vy Loves(x,y)

— “There is a person who loves everyone in the world”
vy 3x Loves(x,y)

— “Everyone in the world is loved by at least one person”
* Quantifier duality: each can be expressed using the other

Exp. Negation

Vx Likes(x,lceCream) 3x —lLikes(x,lceCream)
3x Likes(x,Broccoli) vx —Likes(x,Broccoli)

Equality
Equality:
term, = term, is true under a given interpretation if and only
if term, and term, refer to the same object

FOPC can include equality as a primitive predicate or require
it to be as identity relation

Equal(x,y) or x=y
Examples:

to say “that Mary is taking two courses”, you need to insure
that x,y are different

dx 3y (takes(Mary,x) ~ takes (Mary,y) N ~ (x=y))
To say “Everyone has exactly one father”
Vx Ay father(y,x) » vz father(z,x) =& y=z

Higher Order Logic
» FOPC is called first order because it allows quantifiers to
rang only over objects (terms).
VX, VY [X=y or x>y or y>X]

« Second-Order Logic allows quantifiers to range over
predicates and functions as well

v, vg [f=g <=> (vx f(x)=g(x))]

« Third-Order Logic allows quantifiers to range over
predicates of predicates,.. etc

Examples of FOPC

» Brothers are siblings
Vx, Yy Brotherx,y)=> Siblingix,y)

* One's mother is one's female parent
v'm, V¢ Motherc)= m < (Female(im) ~ Parenlim,c))

» “Sibling” is symmetric
Vx, Yy Siblingixy) < Sihngy,x)

Translating English to FOL

» Every gardener likes the sun.

(Vx) gardener (x) => likes(x,Sun)

Translating English to FOL

e Every gardener likes the sun.

(Vx) gardener(x) => likes(x,Sun)

* You can fool some of the people all of the time.

(dx) person(x) ~ ((Vt) time(t)) => can-—-fool(x,t))

Translating English to FOL

» Every gardener likes the sun.

(Vx) gardener (x) => likes(x,Sun)
* You can fool some of the people all of the time.

(dx) person(x) ~ ((Vt) time(t)) => can—-fool(x,t))
* You can fool all of the people some of the time.

(Vx) person(x) => ((Jdt) time(t) * can-fool(x,t))

Translating English to FOL

e Every gardener likes the sun.

(Vx) gardener(x) => likes(x,Sun)
* You can fool some of the people all of the time.

(dx) person(x) ~ ((Vt) time(t)) => can-—-fool(x,t))
* You can fool all of the people some of the time.

(Vx) person(x) => ((Jt) time(t) * can-fool(x,t))
» All purple mushrooms are poisonous.

(V x) (mushroom(x) * purple(x)) => poisonous (x)

Translating English to FOL

Every gardener likes the sun.

(Vx) gardener (x) => likes(x,Sun)

You can fool some of the people all of the time.

(dx) person(x) ~ ((Vt) time(t)) => can—-fool(x,t))
You can fool all of the people some of the time.

(Vx) person(x) => ((Jdt) time(t) * can-fool(x,t))
All purple mushrooms are poisonous.

(V x) (mushroom(x) * purple(x)) => poisonous (x)
No purple mushroom is poisonous.

~(dx) purple(x) * mushroom(x) *

or, equivalently,

poisonous (x)

(Vx) (mushroom(x) * purple(x)) => ~poisonous (x)

Translating English to FOL

There are exactly two purple mushrooms.

(d%x) (3 y) mushroom(x) * purple(x) * mushroom(y) *
purple(y) * ~(x=y) ~ (Vz) (mushroom(z) * purple(z))
=> ((x=2) v (y=2))

Inference in FOL chapter 9 in Russel

s AP |-i a = sentence a can be derived from AZBby procedure 7
i.e. deriving sentences from other sentences

« Soundness: 7is sound if whenever AZ | q, it is also true that
ABE a

i.e. derivations produce only entailed sentences (o wrorng
mrerences, but maybe ot al irerernces)

» Completeness: 7is complete if whenever /(B|= a, it is also
true that A% | a

i.e. derivations can produce all entailed sentences (a2/
mrerences carn be maak, but maybe sorme wrong exrra
ornes as wef))

Validity and satisfiability

» A sentence is valid if it is true in all models,
e eg., 7me,Av-A, A=A, (AA(A=B) =B

Validity is connected to inference via the following:
V.74 |= a if and only if (AZ—= a) is valid

A sentence is satisfiable if it is true in some model
e.g,AvB, C

A sentence is unsatisfiable if it is true in no models
e.g., Ar—A

Satisfiability is connected to inference via the following:
AB k a if and only if (ABA—a) is unsatisfiable
(there is no model for which KB=true and s false)

Proof Methods in FOL

Major Families:

« GMP

 Reduction

« Resolution

 Forward chaining

« Backward chaining

Some Other inference tools:
Entailment/ Unification/

Proof Methods in FOL

GMP: Using the generalized form of Modus Ponense

Reduction: Reduce all FOL sentences to propositional Calculus
then use inference in propositional calculus
Resolution — Refutation
— Negate goal
— Convert all pieces of knowledge into clausal form (disjunction of literals)
— See if contradiction indicated by null clause [] can be derived

Forward chaining
— GivenP, P = Q, to infer Q
— P, match L.H.S of
— Assert Q from RH.S
Backward chaining
— Q,Match RH.Sof P— Q0
— assert P
— Check if P exists

