

First-order logic Chapter 8-Russel Representation and Reasoning

- In order to determine appropriate actions to take, an intelligent system needs to represent information about the world and draw conclusions based on general world knowledge and specific facts.
- Knowledge is represented by sentences in some language stored in a knowledge base (KB).
- A system draws conclusions from the KB to answer questions, take actions using **Inference Engine (IF)**.

Knowledge Representation

- Logics are formal languages for representing information such that conclusions can be drawn
- **Syntax:** defines the sentences in the language
- **Semantics:** define the "meaning" of sentences: i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
 - x+2 ≥ y is a sentence; x2+y > {} is not a sentence syntax
 - x+2 ≥ y is true in a world where x = 7, y = 1 - x+2 ≥ y is false in a world where x = 0, y = 6 $\begin{cases}
 \frac{x}{2} & \text{if } x = 0 \\
 \frac{x}{2} & \text{if } x = 0
 \end{cases}$

Inference

• Logical Inference (deduction) derives new sentences in the language from existing ones,.

Socrates is a man.

All men are mortal.

Socrates is mortal.

Proper inference should only derive sound conclusions

Examples of Types of Logics

Language	What exist	Degree of belief of an Agent	
Propositional Logic	Facts	{o,1} T or F	
First Order Logic	Facts, Objects, Relations	{0,1} T or F	
Temporal Logic	Facts, Objects, Relations, Time	{0,1} T or F	
Probability Theory	Facts	Chances of belief [0,1]	
Fuzzy Logic	Degree of truth about Facts	Degree of belief [0,1]	

Propositional calculus & First-order logic

- Propositional logic assumes world contains facts.
- First-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, ...
- Relations: red, round, prime,...
- Functions: fatherof, friend, in,...
- Propositional calculus
 A ∧ B ⇒ C
- First-order predicate calculus
 (∀x)(∃y) Mother(y,x)

Syntax of PC_{Chapter 7-Russel}

- Connectives: ¬, ∧, ∨, ⇒
- Propositional symbols, e.g., P, Q, R, ...
 - True, False
 - Syntax of PC
- sentence → atomic sentence | complex sentence
- atomic sentence → Propositional symbol, True, False
- - Rules of Inference:
 - Ex: Modus ponens

Sentence in PC

A sentence (also called a formula or wellformed formula or wff) is defined as:

- A symbol (S, P, ...etc)
- If S is a sentence, then ¬S is a sentence, where
 "¬" is the "not" logical operator
- If S and T are sentences, then (S v T), (S ^ T), (S => T), and (S <=> T) are sentences, where the four logical connectives correspond to "or," "and," "implies," and "if and only if," respectively

Example

P means "It is hot" Q means "It is humid" R means "It is raining"

Examples of PL sentences:

 $(P \land Q) => R$ (here meaning "If it is hot and humid, then it is raining")

Q => P (here meaning "If it is humid, then it is hot") ¬ Q (here meaning "It is not humid.")

Semantics of PC

А	В	¬А	A∧B	A∨B	A⇒B
True	True	False	True	True	True
True	False	False	False	True	False
False	False	True	False	False	True
False	True	True	False	True	True

Truth Tables

- Truth tables can be used to compute the truth value of any wff.
- Can be used to find the truth of $((P \rightarrow R) \rightarrow Q) \lor \neg S$
- Given n features there are 2ⁿ different worlds, different interpretations.
- Interpretation: any assignment of true and false to atoms
- An interpretation satisfies a wff if the wff is assigned true under the interpretation
- A model: An interpretation is a model of a wff if the wff is satisfied in that interpretation.
- Satisfiability of a wff can be determined by the truth-table

$$P \wedge (\neg P)$$

$$(P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg Q)$$

· Wff is unsatisfiable or inconsistent it has no models

Semantics of PC

Validity and Inference

- interpretation of the sentence: Given the truth values of all of the constituent symbols in a sentence, that sentence can be "evaluated" to determine its truth value (True or False).
- A **model** is an interpretation (i.e., an assignment of truth values to symbols) of a set of sentences such that each sentence is True. A model is just a formal mathematical structure for the world.
- A valid sentence (also called a tautology) is a sentence that is True under *all interpretations. Hence, no matter what the world is actually like or what the semantics is, the sentence is True.*

For example 'It's raining or it's not raining."
Remark: Validity can be checked by the truth table

Semantics of PC

Validity and Inference

• An inconsistent sentence (also called unsatisfiable or a contradiction) is a sentence that is False under *all interpretations.*For example, 'It's raining and it's not raining.''

• Sentence P entails sentence Q, written P |= Q, means that whenever P is True, so is Q. In other words, all models of P are also models of Q

Satisfiability

- A sentence is **satisfiable** if it is true under some interpretation (i.e. it has a model), otherwise the sentence is **unsatisfiable**.
- A sentence is **valid** if and only if its negation is unsatisfiable.
- Therefore, algorithms for either validity or satisfiability checking are useful for logical inference.
- If there are *n propositional symbols in a sentence, then* we must check 2ⁿ rows for validity
- **Satisfiability is** NP-complete, i.e. there is no polynomial-time algorithm to solve.
- Yet, many problems can be solved very quickly.

Rules of Inference

- A sequence of inference rule applications that leads to a desired conclusion is called a **logical proof**.
- A |- B , denotes that B can be derived by some inference procedure from the set of sentences A.
- Inference rules can be verified by the truth-table
- The truth table method of inference is complete for PL
- Then used to construct sound proofs.
- Finding a proof is simply a **search problem** with the inference rules as operators and the conclusion as the goal

Rules of Inference

•Modus Ponens: $\{\alpha \Rightarrow \beta, \alpha\} \mid -\beta$

•And Elimination: $\{\alpha \land \beta\} \mid -\alpha$; $\{\alpha \land \beta\} \mid -\beta$

•Double negation Elimination: $\{\neg\neg\alpha\} \vdash \alpha$

•Implication Elimination $\{\alpha \Rightarrow \beta\} \mid \neg \neg \alpha \lor \beta$

•Unit resolution: $\{\alpha \lor \beta, \neg\beta\} \models \alpha$

•Resolution: $\{\alpha \lor \beta, \neg \beta \lor \gamma\} \mid -\alpha \lor \gamma$

Famous logical equivalences

• $(a \lor b) \equiv (b \lor a)$

commutatitvity

• $(a \wedge b) \equiv (b \wedge a)$

commutatitvity

• $((a \land b) \land c) \equiv (a \land (b \land c))$ associativity

• $((a \lor b) \lor c) \equiv (a \lor (b \lor c))$ associativity

¬(¬(a)) ≡ a

double-negation elimination

• $(a => b) \equiv (\neg (b) => \neg (a))$

contraposition

• (a => b) = (¬(a) ∨ b)

implication elimination

¬(a ∧ b) ≡ (¬(a) ∨ ¬(b))

De Morgan

• ¬(a ∨ b) ≡ (¬(a) ∧ ¬(b)) De Morgan

• $(a \land (b \lor c)) \equiv ((a \land b) \lor (a \land c))$ distributitivity

• $(a \lor (b \land c)) \equiv ((a \lor b) \land (a \lor c))$ distributitivity

Rules of Inference

- Producing an additional wffs from a set of wffs
- · From alpha infer beta

 - $w_1 \wedge w_2 \vdash w_2$
- · Sound inference rule:
 - The conclusion is true whenever the premises are true.
- Examples
 - *Modus ponens*: { A and A \rightarrow B |-- B} is sound, resolution is sound.

Pros and cons of propositional logic

- Propositional logic is declarative:
 pieces of syntax correspond to facts
- ✓ Propositional logic is compositional: meaning of A ^ B is derived from meaning of A and B
- ✓ Meaning in propositional logic is context-independent
- (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power
- (unlike natural language)

Propositional logic is a weak language

- Hard to identify "individuals." Ex. Mary, 3
- Can't directly talk about properties of individuals or relations between individuals. Ex. "Bill is tall"
- Generalizations, patterns, regularities can't easily be represented. Ex. all triangles have 3 sides
- First-Order Logic (abbreviated FOL or FOPC) is expressive enough to concisely represent this kind of situation.
 - FOL adds relations, variables, and quantifiers, e.g.,
 - "Every elephant is gray": $\forall x \text{ (elephant}(x) \rightarrow \text{gray}(x))$
 - "There is a white elephant": ∃ x (elephant(x) ^ white(x))

First-order logic

- First-order logic (FOL) models the world in terms of
 - Objects, which are things with individual identities
 - Properties of objects that distinguish them from other objects
 - Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one "value" for any given "input"

Ex:Objects: Students, lectures, companies, cars ...

- Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, second-half, one-more-than

...

FOL Syntax

- Variable symbols
 - E.g., x, y, John
- Connectives: ¬, ∧, ∨, ⇒
 - Quantifiers
 - Universal ∀x
 - Existential ∃x

Syntax of First-order logic

```
Sentence → Atomicsentence

| ( Sentence Connective Sentence )
| Quantifier Variable,... Sentence
| > Sentence
| > Sentence

AtomicSentence → Predicate(Term,...)
| ( Term = Term

Term → Function(Term,...)
| Constant
| Variable

Connective → ¬, ∧, ∨, ⇒

Quantifier → ∀, ∃

Constant → A( XI ( John 1 ...

Variable → a | x | s | ...

Predicate → Before...

Function → Mother | ...
```

Atomic Sentences

- Propositions are represented by a predicate applied to a tuple of terms. A predicate represents a property or relation between terms that can be true or false:
- Brother(John, Fred), Left-of(Square1, Square2),
 GreaterThan(plus(1,1), plus(0,1))
- Sentences in logic **state facts** that are true or false.
- In FOL properties and n-ary relations do express that:
 LargerThan(2,3) is false. Brother(Mary,Pete) is false.
- Note: Functions do not state facts and form no sentence: Brother(Pete) refers to the object John (his brother) and is neither true nor false.
- Brother(Pete, Brother(Pete)) is True.

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies:

```
constant symbols → objects predicate symbols → relations function symbols → functional relations
```

An atomic sentence predicate(term₁,...,term_n) is true iff the objects referred to by term₁,...,term_n are in the relation referred to by predicate

Entailment

• Entailment means that one thing follows from another:

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

- E.g., the KB containing "the Greens won" and "the Reds won" entails "Either the Greens or the reds won"
- E.g., x+y = 4 entails 4 = x+y
- Entailment is a relationship between sentences (i.e., syntax) that is based on semantics
- entailment: necessary truth of one sentence given another

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say mis a model of a sentence α if α is true in m
- M(α) is the set of all models of α
- Then KB |= α iff M(KB) ⊆ M(α)
 - E.g. KB = Greens won and Reds won
 α = Greens won
- Think of KB and α as collections of constraints and of models m as possible states. M(KB) are the solutions to KB and M(α) the solutions to α.
 Then, KB | α when all solutions to KB are also solutions to α.

Nested Quantifiers

 Combinations of universal and existential quantification are possible:

```
\forall x \forall y \ Father(x,y) \equiv \forall y \forall x \ Father(x,y)

\exists x \exists y \ Father(x,y) \equiv \exists y \exists x \ Father(x,y)

\forall x \exists y \ Father(x,y) \neq \exists y \forall x \ Father(x,y)

\exists x \forall y \ Father(x,y) \neq \forall y \exists x \ Father(x,y)

x,y \in \{All \ people\}
```

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using ∧ as the main connective with ∀:
- Ex:

 $\forall x \ At(x,CU) \land Smart(x)$ means "Everyone is at CU and everyone is smart"

Yet to say Everyone at CU is smart $\forall x \ At(x,CU) \Rightarrow Smart(x)$

Another common mistake to avoid

- Typically, ∧ is the main connective with ∃
- Common mistake: using \Rightarrow as the main connective with \exists :

 $\exists \textbf{\textit{x}} At(x,CU) \Rightarrow Smart(x)$ is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart $\exists x At(x,CU) \land Smart(x)$

Properties of quantifiers

```
∀x ∀y is the same as ∀y ∀x
∃x ∃y is the same as ∃y ∃x
∃x ∀y is not the same as ∀y ∃x
∃x ∀y Loves(x,y)
- "There is a person who loves everyone in the world"
∀y ∃x Loves(x,y)
- "Everyone in the world is loved by at least one person"
```

 Quantifier duality: each can be expressed using the other Exp. Negation
 ∀x Likes(x,IceCream) ∃x ¬Likes(x,IceCream)

 $\exists x \text{ Likes}(x, Broccoli) \quad \forall x \neg Likes(x, Broccoli)$

Equality

Equality:

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

FOPC can include equality as a primitive predicate or require it to be as identity relation

Equal(x,y) or x=y

Examples:

to say "that Mary is taking two courses", you need to insure that x,y are different

 $\exists x \exists y (takes(Mary,x) ^ takes (Mary,y) ^ ~ (x=y))$

To say "Everyone has exactly one father"

 $\forall x \exists y \text{ father}(y,x) \land \forall z \text{ father}(z,x) \rightarrow y=z$

Higher Order Logic

• FOPC is called first order because it allows quantifiers to rang only over objects (terms).

$$\forall x, \forall y [x=y \ or \ x>y \ or \ y>x]$$

 Second-Order Logic allows quantifiers to range over predicates and functions as well

$$\forall f$$
, $\forall g [f=g \iff (\forall x f(x)=g(x))]$

- Third-Order Logic allows quantifiers to range over predicates of predicates,
- .. etc

Examples of FOPC

• Brothers are siblings

$$\forall x, \forall y \; \textit{Brother}(x,y) => \textit{Sibling}(x,y)$$

· One's mother is one's female parent

$$\forall m, \forall c \; \textit{Mother(c)} = m \Leftrightarrow \textit{(Female(m)} \land \textit{Parent(m,c))}$$

• "Sibling" is symmetric

$$\forall x, \forall y \; \textit{Sibling(x,y)} \Leftrightarrow \textit{Sibling(y,x)}$$