
3/17/2019

1

Computer

Vision

NLPExpert
Systems

Robotics

Search, 

Reasoning,
Learning

Reasoning

First-order logic Chapter 8-Russel

Representation and Reasoning 
• In order to determine appropriate actions to take, an 

intelligent system needs to represent information 
about the world and draw conclusions based on 
general world knowledge and specific facts.

• Knowledge is represented by sentences in some 
language stored in a knowledge base (KB).

• A system draws conclusions from the KB to answer 
questions, take actions using Inference Engine (IF). 
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Knowledge Representation

• Logics are formal languages for representing 
information such that conclusions can be drawn

• Syntax: defines the sentences in the language

• Semantics: define the “meaning” of sentences: i.e., 
define truth of a sentence in a world

• E.g., the language of arithmetic

– x+2 ≥ y is a sentence; x2+y > {} is not a sentence                      
syntax 

– x+2 ≥ y is true in a world where x = 7, y = 1

– x+2 ≥ y is false in a world where x = 0, y = 6
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Inference

• Logical Inference (deduction) derives new 
sentences in the language from existing ones,.

Socrates is a man.

All men are mortal.

Socrates is mortal.

• Proper inference should only derive sound 
conclusions



3/17/2019

3

Examples of Types of Logics

Language What exist Degree of belief of 
an Agent

Propositional Logic Facts {o,1} T or F

First Order Logic Facts, Objects, 

Relations

{o,1} T or F

Temporal Logic Facts, Objects,

Relations, Time

{o,1} T or F

Probability Theory Facts Chances of belief

[0,1]

Fuzzy  Logic Degree of truth about 

Facts

Degree of belief

[0,1]

Propositional calculus & First-order logic 

• Propositional logic assumes world contains facts.

• First-order logic (like natural language) assumes the 
world contains

� Objects: people, houses, numbers, …

� Relations: red, round, prime,…

� Functions: fatherof, friend, in,…

• Propositional calculus
A ∧ B ⇒ C

• First-order predicate calculus
(∀ x)(∃ y) Mother(y,x)
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Syntax of PCChapter 7-Russel

• Connectives: ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, ⇒⇒⇒⇒

• Propositional symbols, e.g., P, Q, R, …

– True, False 

– Syntax of PC

• sentence � atomic sentence | complex sentence

• atomic sentence � Propositional symbol, True, False

• Complex sentence � ¬¬¬¬sentence
| (sentence ∧∧∧∧ sentence)
| (sentence ∨∨∨∨ sentence)
| (sentence ⇒⇒⇒⇒ sentence)

– Rules of Inference:

– Ex: Modus ponens

Sentence in PC

A sentence (also called a formula or well-
formed formula or wff) is defined as: 

• A symbol (S, P, …etc)

• If S is a sentence, then ¬¬¬¬S is a sentence, where 
"¬¬¬¬" is the "not" logical operator 

• If S and T are sentences, then (S v T), (S ^ T), 
(S => T), and (S <=> T) are sentences, where 
the four logical connectives correspond to "or," 
"and," "implies," and "if and only if," respectively 
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Example

P means "It is hot" 
Q means "It is humid" 
R means "It is raining“

Examples of PL sentences: 
(P ^ Q) => R (here meaning "If it is hot and humid, 
then it is raining") 
Q => P (here meaning "If it is humid, then it is hot") 
¬¬¬¬ Q (here meaning "It is not humid.") 

Semantics of PC

A B ¬¬¬¬ A A ∧∧∧∧ B A ∨∨∨∨ B A ⇒⇒⇒⇒ B

True True False True True True

True False False False True False

False False True False False True

False True True False True True
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Truth Tables

• Truth tables can be used to compute the truth value of any wff.

• Can be used to  find the truth of

• Given n features there are 2n different worlds, different interpretations.

• Interpretation: any assignment of true and false to atoms

• An interpretation satisfies a wff if the wff is assigned true under the 

interpretation

• A model: An interpretation is a model of a wff if the wff is satisfied in that 

interpretation.

• Satisfiability of a wff can be determined by the truth-table

• Wff is unsatisfiable or inconsistent it has no models

–

SQRP ¬∨→→ ))((

)( PP ¬∧

)()()()( QPQPQPQP ¬∨¬∧∨¬∧¬∨∧∨

Semantics of PC
Validity and Inference

• interpretation of the sentence: Given the truth values of all 
of the constituent symbols in a sentence, that sentence can be 
"evaluated" to determine its truth value (True or False). 

• A model is an interpretation (i.e., an assignment of truth 
values to symbols) of a set of sentences such that each 
sentence is True. A model is just a formal mathematical 
structure for the world. 

• A valid sentence (also called a tautology) is a sentence 
that is True under all interpretations. Hence, no matter what 
the world is actually like or what the semantics is, the 
sentence is True. 
For example "It's raining or it's not raining.“ 
Remark: Validity can be checked by the truth table
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Semantics of PC
Validity and Inference

• An inconsistent sentence (also called unsatisfiable or a 
contradiction) is a sentence that is False under all 
interpretations. 
For example, "It's raining and it's not raining." 

• Sentence P entails sentence Q, written P |= Q, means that 
whenever P is True, so is Q. In other words, all models of P 
are also models of Q 

Satisfiability
• A sentence is satisfiable if it is true under some 

interpretation (i.e. it has a model), otherwise the 

sentence is unsatisfiable.

• A sentence is valid if and only if its negation is 

unsatisfiable.

• Therefore, algorithms for either validity or satisfiability

checking are useful for logical inference.

• If there are n propositional symbols in a sentence, then 
we must check 2n rows  for validity

• Satisfiability is NP-complete, i.e. there is no 

polynomial-time algorithm to solve.

• Yet, many problems can be solved very quickly.
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Rules of Inference

• A sequence of inference rule applications that leads to 

a desired conclusion is called a logical proof.

• A |- B , denotes that B can be derived by some 

inference procedure from the set of sentences A.

• Inference rules can be verified by the truth-table 

• The truth table method of inference is complete for PL 

• Then used to construct sound proofs.

• Finding a proof is simply a search problem with the 

inference rules as operators and the conclusion as the 

goal

Rules of Inference

•Modus Ponens:

•And Elimination: 

•Double negation Elimination: 

•Implication Elimination: 

•Unit resolution: 

•Resolution:
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Famous logical equivalences

• (a ∨∨∨∨ b) ≡ (b ∨∨∨∨ a)  commutatitvity

• (a ∧∧∧∧ b) ≡ (b ∧∧∧∧ a)  commutatitvity

• ((a ∧∧∧∧ b) ∧∧∧∧ c) ≡ (a ∧∧∧∧ (b ∧∧∧∧ c)) associativity

• ((a ∨∨∨∨ b) ∨∨∨∨ c) ≡ (a ∨∨∨∨ (b ∨∨∨∨ c)) associativity

• ¬¬¬¬(¬¬¬¬(a)) ≡ a double-negation elimination

• (a => b) ≡ (¬¬¬¬(b) => ¬¬¬¬(a))   contraposition

• (a => b) ≡ (¬¬¬¬(a) ∨∨∨∨ b)  implication elimination

• ¬¬¬¬(a ∧∧∧∧ b) ≡ (¬¬¬¬(a) ∨∨∨∨ ¬¬¬¬(b))  De Morgan

• ¬¬¬¬(a ∨∨∨∨ b) ≡ (¬¬¬¬(a) ∧∧∧∧ ¬¬¬¬(b))  De Morgan

• (a ∧∧∧∧ (b ∨∨∨∨ c)) ≡ ((a ∧∧∧∧ b) ∨∨∨∨ (a ∧∧∧∧ c))  distributitivity

• (a ∨∨∨∨ (b ∧∧∧∧ c)) ≡ ((a ∨∨∨∨ b) ∧∧∧∧ (a ∨∨∨∨ c)) distributitivity

• Producing an additional wffs from a set of wffs

• From alpha infer beta

–

–

• Sound inference rule:

– The conclusion is true whenever the premises are true.

• Examples

– Modus ponens:  { A and A � B  |-- B}  is sound, resolution is 

sound.

βα

Rules of Inference

221
www ∧
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Pros and cons of propositional logic

� Propositional logic is declarative: 

pieces of syntax correspond to facts

� Propositional logic is compositional: 

meaning of A ^ B is derived from meaning of A and B

� Meaning in propositional logic is context-independent

• (unlike natural language, where meaning depends on 
context)

� Propositional logic has very limited expressive power

• (unlike natural language)

Propositional logic is a weak language

� Hard to identify “individuals.” Ex. Mary, 3 

� Can’t directly talk about properties of individuals or 

relations between individuals. Ex. “Bill is tall” 

� Generalizations, patterns, regularities can’t easily be 

represented. Ex. all triangles have 3 sides 

• First-Order Logic (abbreviated FOL or FOPC) is 

expressive enough to concisely represent this kind of 

situation.

– FOL adds relations, variables, and quantifiers, e.g.,

• “Every elephant is gray”: ∀ x (elephant(x) → gray(x))

• “There is a white elephant”: ∃ x (elephant(x) ^ white(x))
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First-order logic
• First-order logic (FOL) models the world in terms of 

– Objects, which are things with individual identities

– Properties of objects that distinguish them from other objects

– Relations that hold among sets of objects

– Functions, which are a subset of relations where there is only 

one “value” for any given “input”

Ex:Objects: Students, lectures, companies, cars ... 

– Relations: Brother-of, bigger-than, outside, part-of, has-color, 

occurs-after, owns, visits, precedes, ... 

– Properties: blue, oval, even, large, ... 

– Functions: father-of, best-friend, second-half, one-more-than 

... 

FOL Syntax

• Variable symbols

– E.g., x, y, John

• Connectives: ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, ⇒⇒⇒⇒

– Quantifiers

– Universal ∀x 

– Existential ∃x
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Sentence � Atomicsentence

| ( Sentence Connective Sentence )

| Quantifier Variable,. . . Sentence

| >Sentence

AtomicSentence � Predicate(Term, . . .)

| ( Term = Term

Term � Function(Term, . . .)

I Constant

| Variable

Connective � ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, ⇒⇒⇒⇒

Quantifier � ∀, ∃

Constant  � A ( XI ( John 1 . . .

Variable  � a | x | s | . . .

Predicate  � Before…

Function  � Mother | …

Syntax of First-order logic

Atomic Sentences
• Propositions are represented by a predicate applied to a tuple

of terms. A predicate represents a property or relation between 
terms that can be true or false:

• Brother(John, Fred), Left-of(Square1, Square2), 
GreaterThan(plus(1,1), plus(0,1))

• Sentences in logic state facts that are true or false. 

• In FOL properties and n-ary relations do express that:

LargerThan(2,3) is false.    Brother(Mary,Pete) is false.

• Note: Functions do not state facts and form no sentence: 
Brother(Pete) refers to the object John (his brother) and is 
neither true nor false.

• Brother(Pete,Brother(Pete)) is True.  

Binary relation Function
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Truth in first-order logic

• Sentences are true with respect to a model and an 
interpretation

• Model contains objects (domain elements) and relations 
among them

• Interpretation specifies:

constant symbols → objects
predicate symbols → relations
function symbols → functional relations

• An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn

are in the relation referred to by predicate

Entailment

• Entailment means that one thing follows from 
another:

KB ╞ α
Knowledge base KB entails sentence α if and only if 

α is true in all worlds where KB is true

– E.g., the KB containing “the Greens won” and “the Reds 
won” entails “Either the Greens or the reds won“

– E.g., x+y = 4 entails  4 = x+y

– Entailment is a relationship between sentences (i.e., 
syntax) that is based on semantics

– entailment: necessary truth of one sentence given 
another
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Models

• Logicians typically think in terms of models, which are formally 
structured worlds with respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB) ⊆ M(α)

– E.g. KB = Greens won and Reds won

α = Greens won

• Think of KB and α as collections of

constraints and of models m as 

possible states. M(KB) are the solutions

to KB and M(α) the solutions to α.

Then, KB ╞ α when all solutions to

KB are also solutions to α. 

Nested Quantifiers
• Combinations of universal and existential quantification 

are possible:

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

, { }

x y Father x y y x Father x y

x y Father x y y x Father x y

x y Father x y y x Father x y

x y Father x y y x Father x y

x y All people

∀ ∀ ≡ ∀ ∀

∃ ∃ ≡ ∃ ∃

∀ ∃ ≠ ∃ ∀

∃ ∀ ≠ ∀ ∃

∈
Binary relation:
“x is a father of y”.
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A common mistake to avoid

• Typically, ⇒ is the main connective with ∀

• Common mistake: using ∧ as the main connective 
with ∀:

• Ex:

∀x At(x,CU) ∧ Smart(x)

means “Everyone is at CU and everyone is smart”

Yet to say Everyone at CU is smart

∀x At(x,CU) ⇒ Smart(x)

Another common mistake to avoid

• Typically, ∧ is the main connective with ∃

• Common mistake: using ⇒ as the main connective 
with ∃:

∃x At(x,CU) ⇒ Smart(x)

is true if there is anyone who is smart not at CU.

Yet to say: there exists someone in CU that is smart

∃x At(x,CU)  ∧ Smart(x)
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Properties of quantifiers
∀x ∀y is the same as ∀y ∀x
∃x ∃y is the same as ∃y ∃x 

∃x ∀y is not the same as ∀y ∃x
∃x ∀y Loves(x,y)

– “There is a person who loves everyone in the world”
∀y ∃x Loves(x,y)

– “Everyone in the world is loved by at least one person”

• Quantifier duality: each can be expressed using the other
Exp. Negation

∀x Likes(x,IceCream) ∃x ¬Likes(x,IceCream)
∃x Likes(x,Broccoli) ∀x ¬Likes(x,Broccoli)

Equality
Equality:

term1 = term2 is true under a given interpretation if and only 

if term1 and term2 refer to the same object

FOPC can include equality as a primitive predicate or require 

it to be as identity relation

Equal(x,y) or x=y

Examples:

to say “that Mary is taking two courses”, you need to insure 

that x,y are different

∃x ∃y ( takes(Mary,x) ^ takes (Mary,y) ^ ~ (x=y))

To say “Everyone has exactly one father”

∀x ∃y father(y,x) ^ ∀z father(z,x) � y=z
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Higher Order Logic

• FOPC is called first order because it allows quantifiers to 

rang only over objects (terms).

∀x, ∀y [x=y or x>y or y>x]

• Second-Order Logic allows quantifiers to range over 

predicates and functions as well

∀f, ∀g [f=g <=> (∀x f(x)=g(x))]

• Third-Order Logic allows quantifiers to range over 

predicates of predicates,

• .. etc

Examples of FOPC

• Brothers are siblings

∀x, ∀y Brother(x,y) => Sibling(x,y)

• One's mother is one's female parent

∀m, ∀c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))

• “Sibling” is symmetric

∀x, ∀y Sibling(x,y) ⇔ Sibling(y,x)

Some may be considered axioms, others as theorems which can be derived 
from the axioms.


