
3/17/2019

1

A list of AI Search Algorithms

Systematic Search algorithms

� BFS, DFS,...

� A*
� AO*

� IDA* (Iterative Deepening)

Local Search Algorithms

� Minimax Search on Game Trees

� Viterbi Search on Probabilistic FSA

� Hill Climbing

� Simulated Annealing

� Gradient Descent

� Stack Based Search

� Genetic Algorithms

� Memetic Algorithms

Game Playing

A (pure) strategy:

a complete set of advance instructions that specifies a 

definite choice for every conceivable situation in 

which the player may be required to act.

In a two-player game, a strategy allows the player to 

have a response to every move of the opponent.

Game-playing programs implement a strategy as a 

software mechanism that supplies the right move on 

request.



3/17/2019

2

Two-Person Perfect Information 

Deterministic Game

• Two players take turns making moves

• Call one Min and the other Max

• Deterministic moves: Board state fully known,

• One player wins by defeating the other (or else there is a tie)

• Want a strategy to win, assuming the other person plays 

rationally 

A logic-based approach to 
games

Find a winning strategy by proving that the 
game can be won -- use backward 
chaining.

A very simple game: nim.

� initially, there is one stack of chips;

� a move: select a stack and divide it in two 
unequal non-empty stacks;

� a player who cannot move loses the game.

(The player who moves first can win.)



3/17/2019

3

Nim

Game tree (2-player, deterministic, 
turns)

How do we search this tree to find the optimal move?



3/17/2019

4

Static evaluation

A static evaluation function returns the value 
of a move without trying to play (which would 
mean simulating the rest of the game but not 
playing it).

“Usually” a static evaluation function returns positive 
values for positions advantageous to Player 1, 
negative values for positions advantageous to 
Player 2.

If Player 1 is rational, he will choose the 
maximal value of a leaf.
Then, Player 2 will choose the minimal value.

If we can have (guess or calculate) the value of 
an internal node N, we can treat it as if it were 
a leaf. This is the basis of the minimax
procedure.

No tree would be necessary if we could evaluate 
the initial position statically. Normally we need 
a tree, and we need to look-ahead into it. 
Further positions can be evaluated more 
precisely, because there is more information, 
and a more focussed search.

Static evaluation



3/17/2019

5

Minimax Tree

• Create a utility function

– Evaluation of board/game state to determine how 
strong the position of each player.

– Player 1 wants to maximize the utility function

– Player 2 wants to minimize the utility function

• Minimax tree

– Generate a new level for each move

– Levels alternate between “max” (player 1 moves) 
and “min” (player 2 moves)

Minimax Tree Evaluation

•Assign utility values to leaves

– If leaf is a “final” state, assign the maximum or 
minimum possible utility value (depending on who 
would win)

– If leaf is not a “final” state, must use some other 
heuristic, specific to the game, to evaluate how 
good/bad the state is at that point



3/17/2019

6

minimax(player,board) 
If(game over in current board position) return winner 
children = all legal moves for player from this board 
if(max's turn) 

return maximal score of calling minimax on all the children 
else (min's turn)

return minimal score of calling minimax on all the children 

Minimax tree
Max

Min

Max

Min



3/17/2019

7

Minimax tree
Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

Minimax tree
Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

28 -3 12 70 -4 -73 -14 -8



3/17/2019

8

Minimax tree
Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

21 -3 12 70 -4 -73 -14 -8

-3 -4 -73

Minimax tree
Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

21 -3 12 70 -4 -73 -14 -8

-3 -4 -73

-3



3/17/2019

9

Tic-Tac-Toe
Let player A be x and let open(x), open(o) 

mean the number of lines open to x and o. 
There are 8 lines. An evaluation function for 
position P:

f(P) = -∞ if o wins

f(P) = +∞ if x wins, otherwise

f(P) = open(x) - open(o)

Example:

open(x) - open(o) = 4 - 6

x
o

Assumptions:

only one of symmetrical positions is 

generated;

Player B chooses the minimal backed-up value among level 1 nodes.

Player A chooses the maximal value, and makes the move.

Player B, as a rational agent, selects the optimal response.

x
x

x

x x x x x

x x x x x

o o
o

o
o

o o
xx

o
o

o
o

o

6-5 5-5 6-5 5-5 4-5 5-4 6-4

5-6 5-5 5-6 6-6 4-6



3/17/2019

10

Building complete piles is usually not necessary. If we evaluate a 
position when it is generated, we may save a lot.

Assume that we are at a minimizing level. If the evaluation 
function returns -∞, we do not need to consider other 
positions:
-∞ will be the minimum.

The same applies to +∞ at a maximizing level.

-∞

x
x

o o

x
x

o o

x
x

o o

x
x

o o

x
x

o o

x
x

o ox
x

x x
x

x
x

o o

x
x

o o

x
x

o o

x
x

o o
x

x x
x

-∞ -∞-∞

o o o o

x x
x

x
x

o

x x

o
o

x

o

o

x

o o

2-2 3-2 4-2 4-3 4-3 3-3

o o

x
ox

xx
o

x
x

o
x
x

o
x
x

ox
x

oo o



3/17/2019

11

Building complete piles is usually not necessary. If we evaluate a 
position when it is generated, we may save a lot.

Assume that we are at a minimizing level. If the evaluation 
function returns -∞, we do not need to consider other 
positions:
-∞ will be the minimum.

The same applies to +∞ at a maximizing level.

-∞

x
x

o o

x
x

o o

x
x

o o

x
x

o o

x
x

o o

x
x

o ox
x

x x
x

x
x

o o

x
x

o o

x
x

o o

x
x

o o
x

x x
x

-∞ -∞-∞

o o o o

Pruning the Minimax Tree

� Minimax works best for large trees, but it can be useful 

even in mini-games such as tic-tac-toe.

� Since we have limited time available, we want to 

avoid unnecessary computation in the minimax tree.

� Pruning: ways of determining that certain branches 

will not be useful. Then cut of these branches



3/17/2019

12

pruning

α pruning 

MAX knows that it can at least 
get “3” by playing this branch

MIN will choose “3”, because it minimizes the 
utility (which is good for MIN)



3/17/2019

13

α pruning

MAX knows that the new branch 
will never be better than 2 for him.
He can ignore it.

MIN can certainly do as good as
2, but maybe better (= smaller)

α pruning

MIN will do at least as good as 14 
in this branch(which is very good 
for MAX!) so MAX will want to 
explore this branch more.



3/17/2019

14

α pruning

MIN will do at least as good as 5 
in this branch(which is still good 
for MAX) so MAX will want to 
explore this branch more.

α pruning

MIN will be able to play this last branch 
and get 2. This is worse than 3, so 
MAX will play 3.



3/17/2019

15

β pruning

• Similar idea to α pruning, but the other way around

• If the current minimum is less than the successor’s 

max value, don’t look down that max tree any more

β pruning example

• Some subtrees at second level already have values > 

min from previous, so we can stop evaluating them.

10021 -3 12 70 -4 73 -14

Min

Min

Max 21

21

70 73



3/17/2019

16

Why is it called α-β?

• α is the value of the best 
(i.e., highest-value) choice 
found so far at any choice 
point along the path for 
max

• If v is worse than α, max
will avoid v

� prune that branch

• Define β similarly for min

α-β Pruning properties

• Pruning by these cuts does not affect final result

– May allow you to go much deeper in tree

• Properties:

– Evaluating “best” branch first yields better likelihood 
of pruning later branches

– Perfect ordering reduces time to bm/2



3/17/2019

17

Properties of minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an rational opponent)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games
� exact solution completely infeasible


