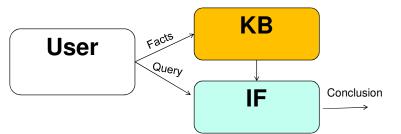


First-order logic Chapter 8-Russel Representation and Reasoning

- In order to determine appropriate actions to take, an intelligent system needs to represent information about the world and draw conclusions based on general world knowledge and specific facts.
- Knowledge is represented by sentences in some language stored in a knowledge base (KB).
- A system draws conclusions from the KB to answer questions, take actions using **Inference Engine (IF)**.



Knowledge Representation

- Logics are formal languages for representing information such that conclusions can be drawn
- **Syntax:** defines the sentences in the language
- **Semantics:** define the "meaning" of sentences: i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
 - x+2 ≥ y is a sentence; x2+y > {} is not a sentence syntax
 - x+2 ≥ y is true in a world where x = 7, y = 1 - x+2 ≥ y is false in a world where x = 0, y = 6 $\begin{cases}
 \frac{x}{2} & \text{if } x = 0 \\
 \frac{x}{2} & \text{if } x = 0
 \end{cases}$

Inference

• Logical Inference (deduction) derives new sentences in the language from existing ones,.

Socrates is a man.

All men are mortal.

Socrates is mortal.

Proper inference should only derive sound conclusions

Examples of Types of Logics

Language	What exist	Degree of belief of an Agent	
Propositional Logic	Facts	{o,1} T or F	
First Order Logic	Facts, Objects, Relations	{0,1} T or F	
Temporal Logic	Facts, Objects, Relations, Time	{0,1} T or F	
Probability Theory	Facts	Chances of belief [0,1]	
Fuzzy Logic	Degree of truth about Facts	Degree of belief [0,1]	

Propositional calculus & First-order logic

- Propositional logic assumes world contains facts.
- First-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, ...
- Relations: red, round, prime,...
- Functions: fatherof, friend, in,...
- Propositional calculus
 A ∧ B ⇒ C
- First-order predicate calculus
 (∀ x)(∃ y) Mother(y,x)

Syntax of PC_{Chapter 7-Russel}

- Connectives: ¬, ∧, ∨, ⇒
- Propositional symbols, e.g., P, Q, R, ...
 - True, False
 - Syntax of PC
- sentence → atomic sentence | complex sentence
- atomic sentence → Propositional symbol, True, False
- - Rules of Inference:
 - Ex: Modus ponens

Sentence in PC

A sentence (also called a formula or wellformed formula or wff) is defined as:

- A symbol (S, P, ...etc)
- If S is a sentence, then ¬S is a sentence, where
 "¬" is the "not" logical operator
- If S and T are sentences, then (S v T), (S ^ T), (S => T), and (S <=> T) are sentences, where the four logical connectives correspond to "or," "and," "implies," and "if and only if," respectively

Example

P means "It is hot" Q means "It is humid" R means "It is raining"

Examples of PL sentences:

 $(P \land Q) => R$ (here meaning "If it is hot and humid, then it is raining")

Q => P (here meaning "If it is humid, then it is hot") ¬ Q (here meaning "It is not humid.")

Semantics of PC

А	В	¬А	A∧B	A∨B	A⇒B
True	True	False	True	True	True
True	False	False	False	True	False
False	False	True	False	False	True
False	True	True	False	True	True

Semantics of PC

Validity and Inference

- interpretation of the sentence: Given the truth values of all of the constituent symbols in a sentence, that sentence can be "evaluated" to determine its truth value (True or False).
- A **model** is an interpretation (i.e., an assignment of truth values to symbols) of a set of sentences such that each sentence is True. A model is just a formal mathematical structure for the world.
- A valid sentence (also called a tautology) is a sentence that is True under *all interpretations. Hence, no matter what the world is actually like or what the semantics is, the sentence is True.*

For example 'It's raining or it's not raining."

Remark: Validity can be checked by the truth table

Semantics of PC

Validity and Inference

 An inconsistent sentence (also called unsatisfiable or a contradiction) is a sentence that is False under all interpretations.

For example, 'It's raining and it's not raining."

• Sentence P entails sentence Q, written P |= Q, means that whenever P is True, so is Q. In other words, all models of P are also models of Q

Satisfiability

- A sentence is **satisfiable** if it is true under some interpretation (i.e. it has a model), otherwise the sentence is **unsatisfiable**.
- A sentence is **valid** if and only if its negation is unsatisfiable.
- Therefore, algorithms for either validity or satisfiability checking are useful for logical inference.
- If there are *n propositional symbols in a sentence, then* we must check 2ⁿ rows for validity
- **Satisfiability is** NP-complete, i.e. there is no polynomial-time algorithm to solve.
- Yet, many problems can be solved very quickly.

Rules of Inference

- A sequence of inference rule applications that leads to a desired conclusion is called a logical proof.
- A |- B , denotes that B can be derived by some inference procedure from the set of sentences A.
- Inference rules can be verified by the truth-table
- The truth table method of inference is complete for PL
- Then used to construct sound proofs.
- Finding a proof is simply a search problem with the inference rules as operators and the conclusion as the goal

Rules of Inference

•Modus Ponens: $\{\alpha \Rightarrow \beta, \alpha\} \mid -\beta$

•And Elimination: $\{\alpha \land \beta\} \mid -\alpha$; $\{\alpha \land \beta\} \mid -\beta$

•Double negation Elimination: $\{\neg\neg\alpha\} \vdash \alpha$

•Implication Elimination $\{\alpha \Rightarrow \beta\} \mid \neg \neg \alpha \lor \beta$

•Unit resolution: $\{\alpha \lor \beta, \neg \beta\} \models \alpha$

•Resolution: $\{\alpha \lor \beta, \neg \beta \lor \gamma\} \mid -\alpha \lor \gamma$

Famous logical equivalences

• (a ∨ b) ≡ (b ∨ a) commutatitvity

• (a ∧ b) ≡ (b ∧ a) commutatitvity

• $((a \land b) \land c) \equiv (a \land (b \land c))$ associativity

• $((a \lor b) \lor c) \equiv (a \lor (b \lor c))$ associativity

• $\neg(\neg(a)) = a$ double-negation elimination

• $(a \Rightarrow b) \equiv (\neg(b) \Rightarrow \neg(a))$ contraposition

• $(a \Rightarrow b) \equiv (\neg(a) \lor b)$ implication elimination

• $\neg (a \land b) \equiv (\neg (a) \lor \neg (b))$ De Morgan

• ¬(a ∨ b) ≡ (¬(a) ∧ ¬(b)) De Morgan

• $(a \land (b \lor c)) \equiv ((a \land b) \lor (a \land c))$ distributitivity

• (a ∨ (b ∧ c)) ≡ ((a ∨ b) ∧ (a ∨ c)) distributitivity

Pros and cons of propositional logic

- Propositional logic is declarative:
 pieces of syntax correspond to facts
- ✓ Propositional logic is compositional: meaning of A ^ B is derived from meaning of A and B
- ✓ Meaning in propositional logic is context-independent
- (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power
- (unlike natural language)

Propositional logic is a weak language

- Hard to identify "individuals." Ex. Mary, 3
- Can't directly talk about properties of individuals or relations between individuals. Ex. "Bill is tall"
- Generalizations, patterns, regularities can't easily be represented. Ex. all triangles have 3 sides
- First-Order Logic (abbreviated FOL or FOPC) is expressive enough to concisely represent this kind of situation.
 - FOL adds relations, variables, and quantifiers, e.g.,
 - "Every elephant is gray": $\forall x \text{ (elephant}(x) \rightarrow \text{gray}(x))$
 - "There is a white elephant": ∃ x (elephant(x) ^ white(x))