
3/20/2015

1

Game Playing

A (pure) strategy:

a complete set of advance instructions that specifies a 
definite choice for every conceivable situation in 
which the player may be required to act.

In a two-player game, a strategy allows the player to 
have a response to every move of the opponent.

Game-playing programs implement a strategy as a 
software mechanism that supplies the right move on 
request.

Two-Person Perfect Information 

Deterministic Game

• Two players take turns making moves

• Call one Min and the other Max

• Deterministic moves: Board state fully known,

• One player wins by defeating the other (or else there is a tie)

• Want a strategy to win, assuming the other person plays 

rationally 

A logic-based approach to 
games

Find a winning strategy by proving that the 
game can be won -- use backward 
chaining.

A very simple game: nim.

� initially, there is one stack of chips;

� a move: select a stack and divide it in two 
unequal non-empty stacks;

� a player who cannot move loses the game.

(The player who moves first can win.)

Nim

Static evaluation

A static evaluation function returns the value 
of a move without trying to play (which would 
mean simulating the rest of the game but not 
playing it).

“Usually” a static evaluation function returns positive 
values for positions advantageous to Player 1, 
negative values for positions advantageous to 
Player 2.

If Player 1 is rational, he will choose the 
maximal value of a leaf.
Then, Player 2 will choose the minimal value.

If we can have (guess or calculate) the value of 
an internal node N, we can treat it as if it were 
a leaf. This is the basis of the minimax
procedure.

No tree would be necessary if we could evaluate 
the initial position statically. Normally we need 
a tree, and we need to look-ahead into it. 
Further positions can be evaluated more 
precisely, because there is more information, 
and a more focussed search.

Static evaluation



3/20/2015

2

Minimax Tree

• Create a utility function

– Evaluation of board/game state to determine how 
strong the position of each player.

– Player 1 wants to maximize the utility function

– Player 2 wants to minimize the utility function

• Minimax tree

– Generate a new level for each move

– Levels alternate between “max” (player 1 moves) 
and “min” (player 2 moves)

Minimax Tree Evaluation

•Assign utility values to leaves

– If leaf is a “final” state, assign the maximum or 
minimum possible utility value (depending on who 
would win)

– If leaf is not a “final” state, must use some other 
heuristic, specific to the game, to evaluate how 
good/bad the state is at that point

Minimax tree

Max

Min

Max

Min

Minimax tree

Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

Minimax tree

Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

28 -3 12 70 -4 -73 -14 -8

Minimax tree

Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

21 -3 12 70 -4 -73 -14 -8

-3 -4 -73



3/20/2015

3

Minimax tree

Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

21 -3 12 70 -4 -73 -14 -8

-3 -4 -73

-3

Tic-Tac-Toe
Let player A be x and let open(x), open(o) 

mean the number of lines open to x and o. 
There are 8 lines. An evaluation function for 
position P:

f(P) = -∞ if o wins

f(P) = +∞ if x wins, otherwise

f(P) = open(x) - open(o)

Example:

open(x) - open(o) = 4 - 6

x
o

Assumptions:
only one of symmetrical positions is 
generated;

Player B chooses the minimal backed-up value among level 1 nodes.

Player A chooses the maximal value, and makes the move.

Player B, as a rational agent, selects the optimal response.

x
x

x

x x x x x

x x x x x

o o
o

o
o

o o
xx

o
o

o
o

o

6-5 5-5 6-5 5-5 4-5 5-4 6-4

5-6 5-5 5-6 6-6 4-6

x xx
x x

o

x x

o o

x

o
o

x

o o

3-3 3-2 4-3 4-2 3-2 3-2

o o

x
xo x

x
o

xx
o

x
x

o
x

x

o
x

x

o

o

o

x x
x

x
x

o

x x

o
o

x

o

o

x

o o

2-2 3-2 4-2 4-3 4-3 3-3

o o

x
ox

xx
o

x
x

o
x
x

o
x
x

ox
x

oo o

Building complete piles is usually not necessary. If we evaluate a 
position when it is generated, we may save a lot.

Assume that we are at a minimizing level. If the evaluation 
function returns -∞, we do not need to consider other 
positions:
-∞ will be the minimum.

The same applies to +∞ at a maximizing level.

-∞

x
x

o o

x
x

o o

x
x

o o

x
x

o o

x
x

o o

x
x

o ox
x

x x
x

x
x

o o

x
x

o o

x
x

o o

x
x

o o
x

x x
x

-∞ -∞-∞

o o o o



3/20/2015

4

Pruning the Minimax Tree

� Minimax works best for large trees, but it can be useful 

even in mini-games such as tic-tac-toe.

� Since we have limited time available, we want to 

avoid unnecessary computation in the minimax tree.

� Pruning: ways of determining that certain branches 

will not be useful. Then cut of these branches

pruning

α pruning 

MAX knows that it can at least 
get “3” by playing this branch

MIN will choose “3”, because it minimizes the 
utility (which is good for MIN)

α pruning

MAX knows that the new branch 
will never be better than 2 for him.
He can ignore it.

MIN can certainly do as good as
2, but maybe better (= smaller)

α pruning

MIN will do at least as good as 14 
in this branch(which is very good 
for MAX!) so MAX will want to 
explore this branch more.

α pruning

MIN will do at least as good as 5 
in this branch(which is still good 
for MAX) so MAX will want to 
explore this branch more.



3/20/2015

5

α pruning

MIN will be able to play this last branch 
and get 2. This is worse than 3, so 
MAX will play 3.

β pruning

• Similar idea to α pruning, but the other way around

• If the current minimum is less than the successor’s 

max value, don’t look down that max tree any more

β pruning example

• Some subtrees at second level already have values > 

min from previous, so we can stop evaluating them.

10021 -3 12 70 -4 73 -14

Min

Min

Max 21

21

70 73

Why is it called α-β?

• α is the value of the best 
(i.e., highest-value) choice 
found so far at any choice 
point along the path for 
max

• If v is worse than α, max
will avoid v

� prune that branch

• Define β similarly for min

α-β Pruning properties

• Pruning by these cuts does not affect final result

– May allow you to go much deeper in tree

• Properties:

– Evaluating “best” branch first yields better likelihood 
of pruning later branches

– Perfect ordering reduces time to bm/2

Properties of minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an rational opponent)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games
� exact solution completely infeasible


