- In many optimization problems, path is irrelevant
- the goal state itself is the solution
- Ex: The 8-queen problem, the final configuration of the queens is the important not the order they were put
- Operates using only single current state, rather than multiple paths.
- Find Optimal Configuration (satisfies the constraints)
- Use *iterative improvement algorithms*
- Good for Optimization problems: find the best state according to some objective function
- A Complete local search algorithm finds a goal if exists
- An Optimal algorithm finds the global minimum or maximum

- Search algorithms like BFS, DFS or A* explore all the search space systematically by keeping one or more paths in memory and by recording which alternatives have been explored.
- Local search algorithms operate using a single current state (rather than multiple paths)
- move only to neighbours of that state.
- Ignore paths
- · Advantages:
 - Use very little memory
 - Can often find reasonable solutions in large or infinite (continuous) state spaces.

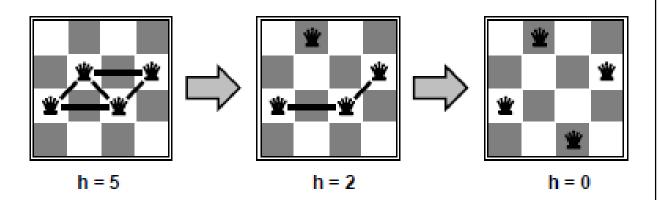
local search algorithms:

- are useful for solving pure optimization problems, in which the aim is to find the best state according to an objective function.
- operate using a single current state (rather than multiple paths) and generally move only to neighbors of that state.

- Local Search Algorithms are used in:
 - Optimization problems
 - find the best state according to some objective function
 - All states have an objective function
 - Goal is to find state with max (or min) objective value
 - Local search can do very well on these problems.

Example n-queens

- Put n queens on an nxn board with no two queens on the same row, column, or diagonal
- Local search: start with all n, move a queen to reduce conflicts



- Hill Climbing
- Simulated annealing
- Genetic algorithms
- Local search in continuous spaces

Local beam search

- One Solution to improve hill Climbing.
- Keep track of kstates instead of one
 - Initially: *Krandomly selected states
 - Next: determine all successors of kstates
 - If any of successors is goal \rightarrow finished
 - Else select
 *★*best from successors and repeat.
- Major difference with random-restart search
 - Information is used for ksearch branches.
- Also improved to stochastic beam search

Simulated Annealing

- Annealing is a process for obtaining low energy states of a solid in a heat bath.
- The process contains two steps:
 - Increase the temperature of the heat bath to a maximum value at which the solid melts.
 - Decrease carefully the temperature of the heat bath until the particles arrange themselves in the ground state of the solid. Ground state is a minimum energy state of the solid.
- The ground state of the solid is obtained only if the maximum temperature is high enough and the cooling is done slowly.

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state

input: problem, a problem

schedule, a mapping from time to temperature

local variables: current, a node.

next; a node.

T, a "temperature" controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[*problem*])

for $t \leftarrow 1$ to ∞ do

T ← schedule[t]

if T = 0 then return *current*

next ← a randomly selected successor of *current*

△E← VALUE[nexit - VALUE[currenit]

if $\Delta E > 0$ then *current* \leftarrow *next*

else *current* \leftarrow *next* only with probability $e^{\Delta E/T}$

The cost of a solution is equivalent to the "energy" of a state.

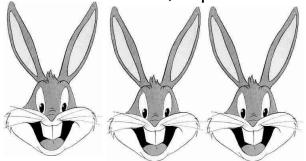
Simulated Annealing

- The search is started with a randomized state. loop we will move to neighboring states always accepting the moves that decrease the energy while only accepting bad moves accordingly to a probability distribution dependent on the "temperature" of the system.
- Decrease the temperature slowly, accepting less bad moves at each temperature level until at very low temperatures the algorithm becomes a greedy hillclimbing algorithm.

The Genetic Algorithm (Evolutionary Analogy)

- Consider a population of rabbits:
- > some individuals are faster and smarter than others
- Slower, dumper rabbits are likely to be caught and eaten by foxes

Fast, smart rabbits survive ,... produce more rabbits.



Evolutionary Analogy

- The rabbits that survive generate offspring, which start to mix up their genetic material
- Furthermore, nature occasionally throws in a wild properties because genes can mutate
- ➤ In this analogy, an individual rabbit represents a solution to the problem(i.e. Single point in the space)
- The foxes represent the problem constraints (solutions that do more well are likely to survive)

Evolutionary Analogy

- Evolution Fundamental Laws: Survival of the fittest.
- Change in species is due to change in genes over reproduction or/and due to mutation.
- ➤ For selection, we use a fitness function to rank individuals of the population
- ➤ For reproduction, we define a crossover operator which takes state descriptions of individuals and combine them to create new ones
- ➤ For mutation, we can choose individuals in the population and alter part of its state.

The Genetic Algorithm

- Directed search algorithms based on the mechanics of biological evolution
- Developed by John Holland, University of Michigan (1970's)
- To design artificial systems software that retains the robustness of natural systems
- Provide efficient, effective techniques for search problems, optimization and machine learning applications
- Widely-used today in business, scientific and engineering circles

Terminology

- Evolutionary Computation (EC) refers to computerbased problem solving systems that use computational models of evolutionary process.
- Chromosome It is an individual representing a candidate solution of the optimization problem.
- Population A set of chromosomes.
- gene It is the fundamental building block of the chromosome, each gene in a chromosome represents each variable to be optimized. It is the smallest unit of information.
- Objective: To find "a" best possible chromosome for a given problem.

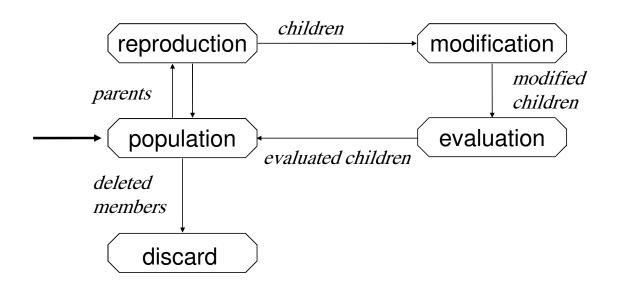
Overview of GAs

- GA emulates genetic evolution.
- A GA has distinct features:
 - > A string representation of chromosomes.
 - A selection procedure for initial population and for off-spring creation.
 - » A cross-over method and a mutation method.
 - > A fitness function.
 - > A replacement procedure.

Overview of GAs

- ■Parameters that affect GA are:
 - initial population
 - size of the population
 - selection process and
 - fitness function

The GA Cycle of Reproduction



Chromosomes

Chromosomes could be:

Bit strings (0101 ... 1100)

Real numbers (43.2 -33.1 ... 0.0 89.2)

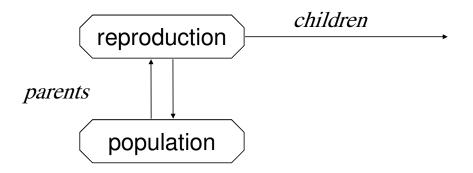
Permutations of element (E11 E3 E7 ... E1 E15)

Lists of rules (R1 R2 R3 ... R22 R23)

Program elements (genetic programming)

... any data structure ...

Reproduction



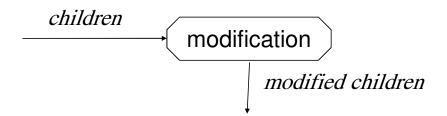
Reproduction is a processes of creating new chromosomes out of chromosomes in the population. Parents are "selected" at each iteration.

Selection Process

- Selection is a procedure of picking parent chromosome to produce off-spring.
- Types of selection:
 - Random Selection Parents are selected randomly from the population.
 - Proportional Selection probabilities for picking each chromosome is calculated as:

$$P(\mathbf{x_i}) = f(\mathbf{x_i})/\Sigma f(\mathbf{x_i})$$
 for all j

Chromosome Modification



- Operator types are:
 - Mutation
 - Crossover (recombination)

Crossover

P1
$$(01101000)$$
 (11011000) C1
P2 (11011010) (011010) C2

Cross-over: It is a process of creating one or more new individuals through the combination of genetic material randomly selected from two parents.

Crossover is a critical feature of genetic algorithms:

- It greatly accelerates search early in evolution of a population
- It leads to effective combination of schemata (subsolutions on different chromosomes)

Cross-over

- Uniform cross-over: where corresponding bit positions are randomly exchanged between two parents.
- One point: random bit is selected and entire sub-string after the bit is swapped.
- Two point: two bits are selected and the sub-string between the bits is swapped.

	Uniform	One point	Two point
	Cross-over	Cross-over	Cross-over
Parent1	0 <mark>0</mark> 11011 <mark>0</mark>	00110110	00110110
Parent2	11011011	110 <mark>1</mark> 1011	11011011
Off-spring1	01110111	001 11011	01011010
Off-spring2	10011010	11010110	10110111

Mutation: Local Modification

Before: (1 0 1 1 0 1 1 0)

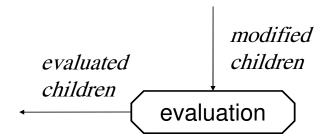
After: (1 0 1 1 1 1 0)

Before: (1.38 -69.4 | 326.44 0.1)

After: (1.38 -67.5 | 326.44 0.1)

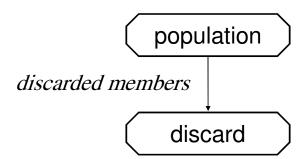
- Causes movement in the search space (local or global)
- Restores lost information to the population
- Prevents falling all solutions in population into a local optimum.

Evaluation



 The evaluator decodes a chromosome and assigns it a fitness measure

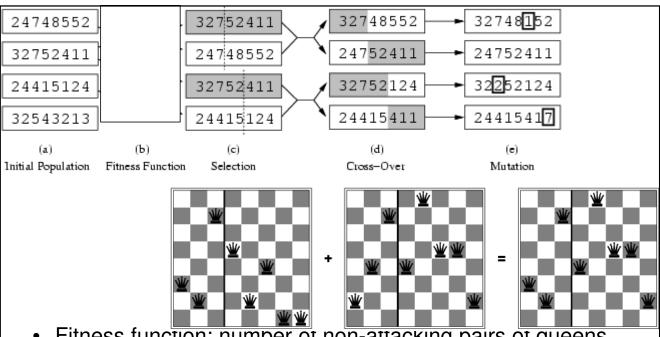
Deletion



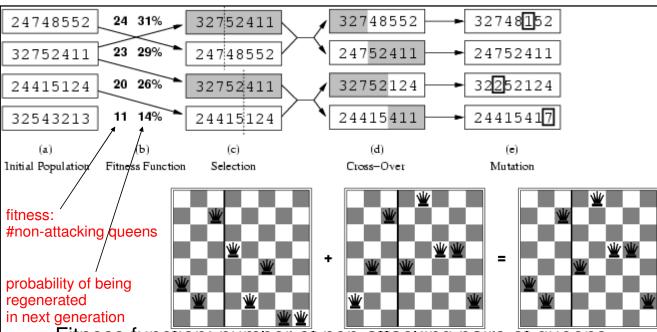
- Generational GA: entire populations replaced with each iteration
- **Steady-state** GA: a few members replaced each generation

Evolutionary Algorithm

```
Let t = 0 be the generation counter;
create and initialize a population P(0);
repeat
Evaluate the fitness, f(\mathbf{x_i}), for all \mathbf{x_i} belonging to P(t);
Perform cross-over to produce offspring;
Perform mutation on offspring;
Select population P(t+1) of new generation;
Advance to the new generation, i.e., t = t+1;
until stopping condition is true;
```



 Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)



- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
- P(child) = 24/(24+23+20+11) = 31%
- P(child) = 23/(24+23+20+11) = 29% etc

Creativity in GA

- ✓ GAs can be thought of as a simultaneous, parallel hill climbing search --- The population as a whole is trying to converge to an optimal solution
- Because solutions can evolve from a variety of factors, very novel solutions can be discovered

A list of AI Search Algorithms

Systematic Search algorithms

- BFS, DFS,...
- A*
 - AO*
 - IDA* (Iterative Deepening)

Local Search Algorithms

- Minimax Search on Game Trees
- Viterbi Search on Probabilistic FSA
- Hill Climbing
- Simulated Annealing
- Gradient Descent
- Stack Based Search
- Genetic Algorithms
- Memetic Algorithms