
3/17/2020

1

Local Search Algorithms

• In many optimization problems, path is irrelevant

• the goal state itself is the solution

• Ex: The 8-queen problem, the final configuration of the
queens is the important not the order they were put

• Operates using only single current state, rather than multiple
paths.

• Find Optimal Configuration (satisfies the constraints)

• Use iterative improvement algorithms

• Good for Optimization problems: find the best state according
to some objective function

• A Complete local search algorithm finds a goal if exists

• An Optimal algorithm finds the global minimum or maximum

3/17/2020

2

Local Search Algorithms

• Search algorithms like BFS, DFS or A* explore
all the search space systematically by keeping
one or more paths in memory and by recording
which alternatives have been explored.

• Local search algorithms operate using a single
current state (rather than multiple paths)

• move only to neighbours of that state.

• Ignore paths

• Advantages:

– Use very little memory

– Can often find reasonable solutions in large or infinite
(continuous) state spaces.

3/17/2020

3

Local Search Algorithms

local search algorithms :

• are useful for solving pure optimization problems, in
which the aim is to find the best state according to an
objective function.

• operate using a single current state (rather than
multiple paths) and generally move only to neighbors
of that state.

3/17/2020

4

Local Search Algorithms

• Local Search Algorithms are used in:

– Optimization problems

– find the best state according to some objective
function

– All states have an objective function

– Goal is to find state with max (or min) objective
value

– Local search can do very well on these problems.

3/17/2020

5

Example n-queens

• Put n queens on an nxn board with no two queens on
the same row, column, or diagonal

• Local search: start with all n, move a queen to reduce
conflicts

Local Search Algorithms

3/17/2020

6

Local Search Algorithms

• Hill Climbing

• Simulated annealing

• Genetic algorithms

• Local search in continuous spaces

3/17/2020

7

Local beam search

• One Solution to improve hill Climbing.

• Keep track of k states instead of one

– Initially: k randomly selected states

– Next: determine all successors of k states

– If any of successors is goal → finished

– Else select k best from successors and repeat.

• Major difference with random-restart search

– Information is used for k search branches.

• Also improved to stochastic beam search

3/17/2020

8

Simulated Annealing

• Annealing is a process for obtaining low energy states of a solid
in a heat bath.

• The process contains two steps:

– Increase the temperature of the heat bath to a maximum
value at which the solid melts.

– Decrease carefully the temperature of the heat bath until the
particles arrange themselves in the ground state of the solid.
Ground state is a minimum energy state of the solid.

• The ground state of the solid is obtained only if the maximum
temperature is high enough and the cooling is done slowly.

3/17/2020

9

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state

input: problem, a problem

schedule, a mapping from time to temperature

local variables: current, a node.

next, a node.

T, a “temperature” controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])

for t ←←←← 1 to ∞ do

T ← schedule[t]

if T = 0 then return current

next ← a randomly selected successor of current

∆E ← VALUE[next] - VALUE[current]

if ∆E > 0 then current ← next

else current ← next only with probability e∆E /T

The cost of a solution is
equivalent to the “energy” of
a state.

3/17/2020

10

Simulated Annealing

• The search is started with a randomized state. loop we
will move to neighboring states always accepting the
moves that decrease the energy while only accepting
bad moves accordingly to a probability distribution
dependent on the “temperature” of the system.

• Decrease the temperature slowly, accepting less bad
moves at each temperature level until at very low
temperatures the algorithm becomes a greedy hill-
climbing algorithm.

3/17/2020

11

The Genetic Algorithm
(Evolutionary Analogy)

• Consider a population of rabbits:

� some individuals are faster and smarter than others

� Slower, dumper rabbits are likely to be
caught and eaten by foxes

� Fast, smart rabbits survive ,… produce more rabbits.

3/17/2020

12

Evolutionary Analogy

�The rabbits that survive generate offspring,
which start to mix up their genetic material

�Furthermore, nature occasionally throws in a
wild properties because genes can mutate

�In this analogy, an individual rabbit represents a
solution to the problem(i.e. Single point in the
space)

�The foxes represent the problem constraints
(solutions that do more well are likely to survive)

3/17/2020

13

Evolutionary Analogy

• Evolution Fundamental Laws: Survival of the fittest.

�Change in species is due to change in genes
over reproduction or/and due to mutation.

�For selection, we use a fitness function to rank
individuals of the population

�For reproduction, we define a crossover operator which
takes state descriptions of individuals and combine
them to create new ones

�For mutation, we can choose individuals in the
population and alter part of its state.

3/17/2020

14

The Genetic Algorithm

• Directed search algorithms based on the mechanics of
biological evolution

• Developed by John Holland, University of Michigan
(1970’s)

• To design artificial systems software that retains the
robustness of natural systems

• Provide efficient, effective techniques for search
problems, optimization and machine learning applications

• Widely-used today in business, scientific and engineering
circles

3/17/2020

15

Terminology

• Evolutionary Computation (EC) refers to computer-

based problem solving systems that use computational

models of evolutionary process.

• Chromosome – It is an individual representing a

candidate solution of the optimization problem.

• Population – A set of chromosomes.

• gene – It is the fundamental building block of the

chromosome, each gene in a chromosome represents

each variable to be optimized. It is the smallest unit of

information.

• Objective: To find “a” best possible chromosome for a

given problem.

3/17/2020

16

Overview of GAs

� GA emulates genetic evolution.

� A GA has distinct features:

�A string representation of chromosomes.

�A selection procedure for initial population and
for off-spring creation.

�A cross-over method and a mutation method.

�A fitness function.

�A replacement procedure.

3/17/2020

17

Overview of GAs

�Parameters that affect GA are:

� initial population

� size of the population

� selection process and

� fitness function

3/17/2020

18

The GA Cycle of Reproduction

reproduction

population evaluation

modification

discard

deleted

members

parents

children

modified

children

evaluated children

3/17/2020

19

Chromosomes

Chromosomes could be:

Bit strings (0101 ... 1100)

Real numbers (43.2 -33.1 ... 0.0 89.2)

Permutations of element (E11 E3 E7 ... E1 E15)

Lists of rules (R1 R2 R3 ... R22 R23)

Program elements (genetic programming)

... any data structure ...

population

3/17/2020

20

Reproduction

reproduction

population

parents

children

Reproduction is a processes of creating new
chromosomes out of chromosomes in the
population. Parents are ”selected” at each iteration.

3/17/2020

21

Selection Process

• Selection is a procedure of picking parent chromosome

to produce off-spring.

• Types of selection:

– Random Selection – Parents are selected randomly

from the population.

– Proportional Selection – probabilities for picking each

chromosome is calculated as:

P(xi) = f(xi)/Σf(xj) for all j

3/17/2020

22

Chromosome Modification

modification
children

• Operator types are:

– Mutation

– Crossover (recombination)

modified children

3/17/2020

23

Crossover

P1 (0 1 1 0 1 0 0 0) (1 1 0 1 1 0 0 0) C1

P2 (1 1 0 1 1 0 1 0) (0 1 1 0 1 0 1 0) C2

Cross-over : It is a process of creating one or
more new individuals through the
combination of genetic material randomly
selected from two parents.

Crossover is a critical feature of genetic

algorithms:

– It greatly accelerates search early in evolution of
a population

– It leads to effective combination of schemata
(subsolutions on different chromosomes)

3/17/2020

24

Cross-over

• Uniform cross-over : where corresponding bit positions
are randomly exchanged between two parents.

• One point : random bit is selected and entire sub-string
after the bit is swapped.

• Two point : two bits are selected and the sub-string
between the bits is swapped.

Uniform

Cross-over

One point

Cross-over

Two point

Cross-over

Parent1

Parent2

00110110

11011011

00110110

11011011

00110110

11011011

Off-spring1

Off-spring2

01110111

10011010

00111011

11010110

01011010

10110111

3/17/2020

25

Mutation: Local Modification

Before: (1 0 1 1 0 1 1 0)

After: (1 0 1 1 1 1 1 0)

Before: (1.38 -69.4 326.44 0.1)

After: (1.38 -67.5 326.44 0.1)

• Causes movement in the search space
(local or global)

• Restores lost information to the population

• Prevents falling all solutions in population
into a local optimum.

3/17/2020

26

Evaluation

• The evaluator decodes a chromosome and
assigns it a fitness measure

evaluation

evaluated

children

modified

children

3/17/2020

27

Deletion

• Generational GA:
entire populations replaced with each iteration

• Steady-state GA:
a few members replaced each generation

population

discard

discarded members

3/17/2020

28

Evolutionary Algorithm

Let t = 0 be the generation counter;

create and initialize a population P(0);

repeat

Evaluate the fitness, f(xi), for all xi belonging to P(t);

Perform cross-over to produce offspring;

Perform mutation on offspring;

Select population P(t+1) of new generation;

Advance to the new generation, i.e., t = t+1;

until stopping condition is true;

3/17/2020

29

• Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 × 7/2 = 28)

3/17/2020

30

• Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 × 7/2 = 28)

• P(child) = 24/(24+23+20+11) = 31%

• P(child) = 23/(24+23+20+11) = 29% etc

fitness:
#non-attacking queens

probability of being
regenerated
in next generation

3/17/2020

31

Creativity in GA

�GAs can be thought of as a simultaneous, parallel

hill climbing search --- The population as a whole is

trying to converge to an optimal solution

�Because solutions can evolve from a variety of

factors, very novel solutions can be discovered

3/17/2020

32

A list of AI Search Algorithms

Systematic Search algorithms

� BFS, DFS,...

� A*
� AO*

� IDA* (Iterative Deepening)

Local Search Algorithms

� Minimax Search on Game Trees

� Viterbi Search on Probabilistic FSA

� Hill Climbing

� Simulated Annealing

� Gradient Descent

� Stack Based Search

� Genetic Algorithms

� Memetic Algorithms

