
3/1/2019

1

Local Search Algorithms

• In many optimization problems, path is irrelevant

• the goal state itself is the solution

• Ex: The 8-queen problem, the final configuration of the
queens is the important not the order they were put

• Operates using only single current state, rather than multiple
paths.

• Find Optimal Configuration (satisfies the constraints)

• Use iterative improvement algorithms

• Good for Optimization problems: find the best state according
to some objective function

• A Complete local search algorithm finds a goal if exists

• An Optimal algorithm finds the global minimum or maximum

Local Search Algorithms

• Search algorithms like BFS, DFS or A* explore
all the search space systematically by keeping
one or more paths in memory and by recording
which alternatives have been explored.

• Local search algorithms operate using a single
current state (rather than multiple paths)

• move only to neighbors of that state.

• Ignore paths

• Advantages:

– Use very little memory

– Can often find reasonable solutions in large or infinite
(continuous) state spaces.

3/1/2019

2

Local Search Algorithms

• Good for Optimization problems

– find the best state according to some objective
function

– All states have an objective function

– Goal is to find state with max (or min) objective
value

– Local search can do very well on these problems.

Example n-queens

• Put n queens on an nxn board with no two queens on
the same row, column, or diagonal

• Local search: start with all n, move a queen to reduce
conflicts

Local Search Algorithms

3/1/2019

3

Local Search Algorithms

• Hill Climbing

• Simulated annealing

• Genetic algorithms

• Local search in continuous spaces

Local beam search

• One Solution to improve hill Climbing.

• Keep track of k states instead of one

– Initially: k randomly selected states

– Next: determine all successors of k states

– If any of successors is goal → finished

– Else select k best from successors and repeat.

• Major difference with random-restart search

– Information is used for k search branches.

• Also improved to stochastic beam search

3/1/2019

4

Simulated Annealing

• Annealing is a process for obtaining low energy states of a solid
in a heat bath.

• The process contains two steps:

– Increase the temperature of the heat bath to a maximum
value at which the solid melts.

– Decrease carefully the temperature of the heat bath until the
particles arrange themselves in the ground state of the solid.
Ground state is a minimum energy state of the solid.

• The ground state of the solid is obtained only if the maximum
temperature is high enough and the cooling is done slowly.

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state

input: problem, a problem

schedule, a mapping from time to temperature

local variables: current, a node.

next, a node.

T, a “temperature” controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])

for t ←←←← 1 to ∞ do

T ← schedule[t]

if T = 0 then return current

next ← a randomly selected successor of current

∆E ← VALUE[next] - VALUE[current]

if ∆E > 0 then current ← next

else current ← next only with probability e∆E /T

The cost of a solution is
equivalent to the “energy” of
a state.

3/1/2019

5

Simulated Annealing

• The search is started with a randomized state. loop we
will move to neighboring states always accepting the
moves that decrease the energy while only accepting
bad moves accordingly to a probability distribution
dependent on the “temperature” of the system.

• Decrease the temperature slowly, accepting less bad
moves at each temperature level until at very low
temperatures the algorithm becomes a greedy hill-
climbing algorithm.

Local Search Algorithms

local search algorithms :

• are useful for solving pure optimization problems, in
which the aim is to find the best state according to an
objective function.

• operate using a single current state (rather than
multiple paths) and generally move only to neighbors
of that state.

3/1/2019

6

The Genetic Algorithm
(Evolutionary Analogy)

• Consider a population of rabbits:

� some individuals are faster and smarter than others

� Slower, dumper rabbits are likely to be
caught and eaten by foxes

� Fast, smart rabbits survive ,… produce more rabbits.

Evolutionary Analogy

�The rabbits that survive generate offspring,
which start to mix up their genetic material

�Furthermore, nature occasionally throws in a
wild properties because genes can mutate

�In this analogy, an individual rabbit represents a
solution to the problem(i.e. Single point in the
space)

�The foxes represent the problem constraints
(solutions that do more well are likely to survive)

3/1/2019

7

Evolutionary Analogy

• Evolution Fundamental Laws: Survival of the fittest.

�Change in species is due to change in genes
over reproduction or/and due to mutation.

�For selection, we use a fitness function to rank
individuals of the population

�For reproduction, we define a crossover operator which
takes state descriptions of individuals and combine
them to create new ones

�For mutation, we can choose individuals in the
population and alter part of its state.

The Genetic Algorithm

• Directed search algorithms based on the mechanics of
biological evolution

• Developed by John Holland, University of Michigan
(1970’s)

• To design artificial systems software that retains the
robustness of natural systems

• Provide efficient, effective techniques for search
problems, optimization and machine learning applications

• Widely-used today in business, scientific and engineering
circles

3/1/2019

8

Terminology

• Evolutionary Computation (EC) refers to computer-

based problem solving systems that use computational

models of evolutionary process.

• Chromosome – It is an individual representing a

candidate solution of the optimization problem.

• Population – A set of chromosomes.

• gene – It is the fundamental building block of the

chromosome, each gene in a chromosome represents

each variable to be optimized. It is the smallest unit of

information.

• Objective: To find “a” best possible chromosome for a

given problem.

Overview of GAs

� GA emulates genetic evolution.

� A GA has distinct features:

�A string representation of chromosomes.

�A selection procedure for initial population and
for off-spring creation.

�A cross-over method and a mutation method.

�A fitness function.

�A replacement procedure.

3/1/2019

9

Overview of GAs

�Parameters that affect GA are:

� initial population

� size of the population

� selection process and

� fitness function

The GA Cycle of Reproduction

reproduction

population evaluation

modification

discard

deleted

members

parents

children

modified

children

evaluated children

3/1/2019

10

Chromosomes

Chromosomes could be:

Bit strings (0101 ... 1100)

Real numbers (43.2 -33.1 ... 0.0 89.2)

Permutations of element (E11 E3 E7 ... E1 E15)

Lists of rules (R1 R2 R3 ... R22 R23)

Program elements (genetic programming)

... any data structure ...

population

Reproduction

reproduction

population

parents

children

Reproduction is a processes of creating new
chromosomes out of chromosomes in the
population. Parents are ”selected” at each iteration.

3/1/2019

11

Selection Process

• Selection is a procedure of picking parent chromosome

to produce off-spring.

• Types of selection:

– Random Selection – Parents are selected randomly

from the population.

– Proportional Selection – probabilities for picking each

chromosome is calculated as:

P(xi) = f(xi)/Σf(xj) for all j

Chromosome Modification

modification
children

• Operator types are:

– Mutation

– Crossover (recombination)

modified children

3/1/2019

12

Crossover

P1 (0 1 1 0 1 0 0 0) (1 1 0 1 1 0 0 0) C1

P2 (1 1 0 1 1 0 1 0) (0 1 1 0 1 0 1 0) C2

Cross-over : It is a process of creating one or
more new individuals through the
combination of genetic material randomly
selected from two or parents.

Crossover is a critical feature of genetic

algorithms:

– It greatly accelerates search early in evolution of
a population

– It leads to effective combination of schemata
(subsolutions on different chromosomes)

Cross-over

• Uniform cross-over : where corresponding bit positions
are randomly exchanged between two parents.

• One point : random bit is selected and entire sub-string
after the bit is swapped.

• Two point : two bits are selected and the sub-string
between the bits is swapped.

Uniform

Cross-over

One point

Cross-over

Two point

Cross-over

Parent1

Parent2

00110110

11011011

00110110

11011011

00110110

11011011

Off-spring1

Off-spring2

01110111

10011010

00111011

11010110

01011010

10110111

3/1/2019

13

Mutation: Local Modification

Before: (1 0 1 1 0 1 1 0)

After: (1 0 1 1 1 1 1 0)

Before: (1.38 -69.4 326.44 0.1)

After: (1.38 -67.5 326.44 0.1)

• Causes movement in the search space
(local or global)

• Restores lost information to the population

• Prevents falling all solutions in population
into a local optimum.

Evaluation

• The evaluator decodes a chromosome and
assigns it a fitness measure

evaluation

evaluated

children

modified

children

3/1/2019

14

Deletion

• Generational GA:
entire populations replaced with each iteration

• Steady-state GA:
a few members replaced each generation

population

discard

discarded members

Evolutionary Algorithm

Let t = 0 be the generation counter;

create and initialize a population P(0);

repeat

Evaluate the fitness, f(xi), for all xi belonging to P(t);

Perform cross-over to produce offspring;

Perform mutation on offspring;

Select population P(t+1) of new generation;

Advance to the new generation, i.e., t = t+1;

until stopping condition is true;

3/1/2019

15

• Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 × 7/2 = 28)

• Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 × 7/2 = 28)

• P(child) = 24/(24+23+20+11) = 31%

• P(child) = 23/(24+23+20+11) = 29% etc

fitness:
#non-attacking queens

probability of being
regenerated
in next generation

3/1/2019

16

Creativity in GA

�GAs can be thought of as a simultaneous, parallel

hill climbing search --- The population as a whole is

trying to converge to an optimal solution

�Because solutions can evolve from a variety of

factors, very novel solutions can be discovered

A list of AI Search Algorithms

Systematic Search algorithms

� BFS, DFS,...

� A*
� AO*

� IDA* (Iterative Deepening)

Local Search Algorithms

� Minimax Search on Game Trees

� Viterbi Search on Probabilistic FSA

� Hill Climbing

� Simulated Annealing

� Gradient Descent

� Stack Based Search

� Genetic Algorithms

� Memetic Algorithms

