
Local Search Algorithms

• In many optimization problems, 

• the goal state itself is the solution

• Ex: The 8-queen problem, the final  configuration of the 
queens is the important  not the order they were put

• Operates using only single current state, rather than multiple 
paths.

• Find Optimal Configuration ( satisfies the constraints)

• Use iterative improvement algorithms

• Good for Optimization problems: find the best state 
to some objective function 

• A Complete local search algorithm finds a goal if exists

• An Optimal algorithm finds the global minimum or maximum
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Local Search Algorithms

• In many optimization problems, path is 
irrelevant; the goal state itself is the solution

• local search algorithms are useful for solving 
pure optimization problems, 
is to find the best state according to an 
objective function.objective function.

• In such cases, can use iterative improvement 
algorithms; keep a single “current" state, try to 
improve it

Local Search Algorithms

In many optimization problems, path is 
irrelevant; the goal state itself is the solution

local search algorithms are useful for solving 
optimization problems, in which the aim 

is to find the best state according to an 

In such cases, can use iterative improvement 
algorithms; keep a single “current" state, try to 



Local Search Algorithms

• Local search algorithms operate using

• a single current state (rather than multiple 
paths) and generally move only to neighbors 
of that state.of that state.

• Recall:

• A complete, local search algorithm always finds 
a goal if one exists; 

• An optimal algorithm always finds a, global 
minimum/maximum.

Local Search Algorithms

Local search algorithms operate using

current state (rather than multiple 
paths) and generally move only to neighbors 

local search algorithm always finds 

always finds a, global 



Example n-queens

• Put n queens on an nxn board with no two queens on 
the same row, column, or diagonal

• Local search: start with all n, move a queen to reduce 
conflicts

Local Search Algorithms

conflicts

board with no two queens on 
the same row, column, or diagonal

Local search: start with all n, move a queen to reduce 

Local Search Algorithms



Local Search Algorithms

• Hill Climbing 

• Simulated annealing

• Genetic algorithms

• Local search in continuous spaces• Local search in continuous spaces

Local Search Algorithms

Local search in continuous spacesLocal search in continuous spaces



Simulated annealing search

• Idea: escape local maxima by allowing some “bad” 
moves but gradually decrease their size and frequency

• At fixed temperature T, state occupation probability 
reaches Boltzman distribution

• T decreases slowly enough and guarantees to reach • T decreases slowly enough and guarantees to reach 
best state x

• “Ping-pong ball example”

Simulated annealing search

escape local maxima by allowing some “bad” 
moves but gradually decrease their size and frequency

At fixed temperature T, state occupation probability 
distribution

T decreases slowly enough and guarantees to reach T decreases slowly enough and guarantees to reach 



Simulated annealing search

• Algorithm:

– From current state, pick a random successor state; 

– If it is better than current state, then use it as current 

– Otherwise, -Instead of restarting from a random point
allow the search to take some downhill steps to try to escape local allow the search to take some downhill steps to try to escape local 
maxima. 

Simulated annealing search

From current state, pick a random successor state; 

it is better than current state, then use it as current state;

Instead of restarting from a random point- we can 
allow the search to take some downhill steps to try to escape local allow the search to take some downhill steps to try to escape local 



Simulated annealing search

• Probability of downward steps is controlled by 
parameter. 

• High temperature implies high chance of trying locally "bad" 
moves, allowing nondeterministic 

• Low temperature makes search more deterministic (like hill
climbing). climbing). 

• Temperature begins high and gradually decreases according to 
a predetermined annealing schedule. 

• Initially we are willing to try out lots of possible paths, but over 
time we gradually settle in on the most promising path. 

• If temperature is lowered slowly enough, an optimal solution will 
be found. In practice, this schedule is often too slow 

Simulated annealing search

of downward steps is controlled by temperature 

temperature implies high chance of trying locally "bad" 
nondeterministic exploration. 

temperature makes search more deterministic (like hill-

begins high and gradually decreases according to 
annealing schedule. 

we are willing to try out lots of possible paths, but over 
time we gradually settle in on the most promising path. 

If temperature is lowered slowly enough, an optimal solution will 
In practice, this schedule is often too slow 



The Genetic Algorithm 
(Evolutionary Analogy)

• Consider a population of rabbits:

� some individuals are faster and smarter than others

� Slower, dumper rabbits are likely to be                          
caught and eaten by foxes

� Fast, smart rabbits survive ,… produce more rabbits.

The Genetic Algorithm 
(Evolutionary Analogy)

Consider a population of rabbits:

some individuals are faster and smarter than others

Slower, dumper rabbits are likely to be                          

Fast, smart rabbits survive ,… produce more rabbits.



Evolutionary Analogy

�The rabbits that survive generate offspring, 
which start to mix up their genetic material

�Furthermore, nature occasionally throws in a 
wild properties because genes can mutatewild properties because genes can mutate

�In this analogy, an individual rabbit represents a 
solution to the problem(i.e
space)

�The foxes represent the problem constraints 
(solutions that do more well are likely to survive)

Evolutionary Analogy

The rabbits that survive generate offspring, 
which start to mix up their genetic material

Furthermore, nature occasionally throws in a 
wild properties because genes can mutatewild properties because genes can mutate

In this analogy, an individual rabbit represents a 
the problem(i.e. Single point in the 

The foxes represent the problem constraints 
(solutions that do more well are likely to survive)



Evolutionary Analogy

• Evolution Fundamental Laws: 

�Change in species is due to change in genes 
over reproduction or/and due to mutation

�For selection, we use a fitness function to rank 
individuals of the population

�For reproduction, we define a crossover operator which �For reproduction, we define a crossover operator which 
takes state descriptions of individuals and combine 
them to create new ones

�For mutation, we can choose individuals in the 
population and alter part of its state

Evolutionary Analogy

Evolution Fundamental Laws: Survival of the fittest.

in species is due to change in genes 
over reproduction or/and due to mutation.

selection, we use a fitness function to rank 
individuals of the population

For reproduction, we define a crossover operator which For reproduction, we define a crossover operator which 
takes state descriptions of individuals and combine 

For mutation, we can choose individuals in the 
population and alter part of its state.



The Genetic Algorithm

• Directed search algorithms based on the mechanics of 
biological evolution

• Developed by John Holland, University of Michigan 
(1970’s)

• To design artificial systems software that retains the • To design artificial systems software that retains the 
robustness of natural systems

• Provide efficient, effective techniques for search 
problems, optimization and machine learning applications

• Widely-used today in business, scientific and engineering 
circles

The Genetic Algorithm

Directed search algorithms based on the mechanics of 

Developed by John Holland, University of Michigan 

To design artificial systems software that retains the To design artificial systems software that retains the 
robustness of natural systems

Provide efficient, effective techniques for search 
problems, optimization and machine learning applications

used today in business, scientific and engineering 



Terminology

• Evolutionary Computation (EC)
based problem solving systems that use computational 
models of evolutionary process.

• Chromosome – It is an individual representing a 
candidate solution of the optimization problem.

• Population – A set of chromosomes.• Population – A set of chromosomes.

• gene – It is the fundamental building block of the 
chromosome, each gene in a chromosome represents 
each variable to be optimized. It is the smallest unit of 
information.

• Objective: To find “a” best possible chromosome for a 
given problem.

Terminology

Evolutionary Computation (EC) refers to computer-
based problem solving systems that use computational 
models of evolutionary process.

It is an individual representing a 
candidate solution of the optimization problem.

A set of chromosomes.A set of chromosomes.

It is the fundamental building block of the 
chromosome, each gene in a chromosome represents 
each variable to be optimized. It is the smallest unit of 

best possible chromosome for a 



Overview of GAs

� GA emulate genetic evolution.

� A GA has distinct features:

�A string representation of chromosomes.

�A selection procedure for initial population and 
for off-spring creation.for off-spring creation.

�A cross-over method and a mutation method.

�A fitness function.

�A replacement procedure.

� Parameters that affect GA are initial 
population, size of the population, selection 
process and fitness function.

Overview of GAs

GA emulate genetic evolution.

A GA has distinct features:

A string representation of chromosomes.

A selection procedure for initial population and 
spring creation.spring creation.

over method and a mutation method.

A replacement procedure.

Parameters that affect GA are initial 
population, size of the population, selection 
process and fitness function.



Evolutionary 

Let t = 0 be the generation counter;

create and initialize a population 

repeat

Evaluate the fitness, f(xi), for all i

Perform cross-over to produce offspring;

Perform mutation on offspring;

Select population P(t+1)

Advance to the new generation,

until stopping condition is true;

Evolutionary Algorithm

Let t = 0 be the generation counter;

create and initialize a population P(0);

), for all xi belonging to P(t);i

over to produce offspring;

Perform mutation on offspring;

of new generation;

Advance to the new generation, i.e., t = t+1;

stopping condition is true;



The GA Cycle of Reproduction

reproduction

parents

children

population

discard

deleted 

members

evaluated children

The GA Cycle of Reproduction

modification
children

modified

children

evaluation
evaluated children



Chromosomes

Chromosomes could be:

Bit strings                                         (0101 ... 1100)

population

Bit strings                                         (0101 ... 1100)

Real numbers                     (43.2 

Permutations of element     (E11 E3 E7 ... E1 E15)

Lists of rules                       (R1 R2 R3 ... R22 R23)

Program elements               (genetic programming)

... any data structure ...

Chromosomes

Chromosomes could be:

Bit strings                                         (0101 ... 1100)

population

Bit strings                                         (0101 ... 1100)

Real numbers                     (43.2 -33.1 ... 0.0 89.2) 

Permutations of element     (E11 E3 E7 ... E1 E15)

Lists of rules                       (R1 R2 R3 ... R22 R23)

Program elements               (genetic programming)



Reproduction

reproduction

population

parents

population

Reproduction is a processes of creating new 
chromosomes out of chromosomes in the 
population. Parents are ”selected”

Reproduction

children

is a processes of creating new 
chromosomes out of chromosomes in the 

”selected” at each iteration.



Selection Process

• Selection is a procedure of picking parent chromosome 
to produce off-spring.

• Types of selection:

– Random Selection – Parents are selected randomly 
from the population.

– Proportional Selection 
chromosome is calculated as:

P(xi) = f(x

Selection is a procedure of picking parent chromosome 

Parents are selected randomly 

Proportional Selection – probabilities for picking each 
chromosome is calculated as:

xi)/Σf(xj) for all j



Chromosome Modification

modification
children

• Operator types are:

– Mutation

– Crossover (recombination)

Chromosome Modification

modification

modified children

Crossover (recombination)



Crossover

P1 (0 1 1 0 1 0 0 0)            (1 1 0 1 1 0 0 0)   

P2 (1 1 0 1 1 0 1 0)            (0 1 1 0 1 0 1 0)   

Cross-over : It is a process of creating one or 
more new individuals through the 
combination of genetic material randomly combination of genetic material randomly 
selected from two or parents.

Crossover is a critical feature of genetic

algorithms:

– It greatly accelerates search early in evolution of 
a population

– It leads to effective combination of schemata 
(subsolutions on different chromosomes)

Crossover

(0 1 1 0 1 0 0 0)            (1 1 0 1 1 0 0 0)   C1

(1 1 0 1 1 0 1 0)            (0 1 1 0 1 0 1 0)   C2

over : It is a process of creating one or 
more new individuals through the 
combination of genetic material randomly combination of genetic material randomly 
selected from two or parents.

is a critical feature of genetic

It greatly accelerates search early in evolution of 

It leads to effective combination of schemata 
on different chromosomes)



Cross

• Uniform cross-over : where corresponding bit positions 
are randomly exchanged between two parents.

• One point : random bit is selected and entire sub
after the bit is swapped.

• Two point : two bits are selected and the sub
between the bits is swapped.

Uniform 
Cross-over

Parent1
Parent2

00110110
11011011

Off-spring1
Off-spring2

01110111
10011010

Cross-over

: where corresponding bit positions 
are randomly exchanged between two parents.

: random bit is selected and entire sub-string 

: two bits are selected and the sub-string 
between the bits is swapped.

One point
Cross-over

Two point
Cross-over

00110110
11011011

00110110
11011011

00111011
11010110

01011010
10110111



Mutation: Local Modification

Before: (1  0  1  1  0  1  1  0)

After: (1  0  1  1  1  1  1  0)

Before: (1.38   -69.4   326.44   0.1)

After: (1.38   -67.5   326.44   0.1)

• Causes movement in the search space
(local or global)

• Restores lost information to the 

• Prevents falling all solutions in population 
into a local optimum.

Mutation: Local Modification

(1  0  1  1  0  1  1  0)

(1  0  1  1  1  1  1  0)

69.4   326.44   0.1)

67.5   326.44   0.1)

Causes movement in the search space

Restores lost information to the population

falling all solutions in population 



Evaluation

evaluation

evaluated

children

• The evaluator decodes a chromosome and 
assigns it a fitness measure

Evaluation

evaluation

modified

children

The evaluator decodes a chromosome and 
fitness measure



Deletion

population

discard

discarded members

• Generational GA:
entire populations replaced with each iteration

• Steady-state GA:
a few members replaced each generation

Deletion

population

discard

entire populations replaced with each iteration

a few members replaced each generation



• Fitness function: number of non
(min = 0, max = 8 × 7/2 = 28)
Fitness function: number of non-attacking pairs of queens 

7/2 = 28)



fitness:  
#non-attacking queens

• Fitness function: number of non
(min = 0, max = 8 × 7/2 = 28)

• P(child) = 24/(24+23+20+11) = 31%

• P(child) = 23/(24+23+20+11) = 29% etc

probability of being 
regenerated
in next generation

Fitness function: number of non-attacking pairs of queens 
7/2 = 28)

P(child) = 24/(24+23+20+11) = 31%

P(child) = 23/(24+23+20+11) = 29% etc



Creativity in GA

�GAs can be thought of as a simultaneous, parallel 
hill climbing search  --- The population as a whole is 
trying to converge to an optimal solution

�Because solutions can evolve from a variety of 
factors, very novel solutions can be discovered 

Creativity in GA

GAs can be thought of as a simultaneous, parallel 
The population as a whole is 

trying to converge to an optimal solution

Because solutions can evolve from a variety of 
factors, very novel solutions can be discovered 



A list of AI Search Algorithms

Systematic Search algorithms

� BFS, DFS,...

� A*
� AO*

� IDA* (Iterative Deepening)

Local Search AlgorithmsLocal Search Algorithms

� Minimax Search on Game Trees

� Viterbi Search on Probabilistic FSA

� Hill Climbing

� Simulated Annealing

� Gradient Descent

� Stack Based Search

� Genetic Algorithms

� Memetic Algorithms

A list of AI Search Algorithms

Systematic Search algorithms

IDA* (Iterative Deepening)

Search on Game Trees

Search on Probabilistic FSA


