
Local Search Algorithms

• In many optimization problems,

• the goal state itself is the solution

• Ex: The 8-queen problem, the final configuration of the
queens is the important not the order they were put

• Operates using only single current state, rather than multiple
paths.

• Find Optimal Configuration (satisfies the constraints)

• Use iterative improvement algorithms

• Good for Optimization problems: find the best state
to some objective function

• A Complete local search algorithm finds a goal if exists

• An Optimal algorithm finds the global minimum or maximum

Local Search Algorithms

In many optimization problems, path is irrelevant

the goal state itself is the solution

queen problem, the final configuration of the
not the order they were put

Operates using only single current state, rather than multiple

Find Optimal Configuration (satisfies the constraints)

iterative improvement algorithms

problems: find the best state according

local search algorithm finds a goal if exists

algorithm finds the global minimum or maximum

Local Search Algorithms

• In many optimization problems, path is
irrelevant; the goal state itself is the solution

• local search algorithms are useful for solving
pure optimization problems,
is to find the best state according to an
objective function.objective function.

• In such cases, can use iterative improvement
algorithms; keep a single “current" state, try to
improve it

Local Search Algorithms

In many optimization problems, path is
irrelevant; the goal state itself is the solution

local search algorithms are useful for solving
optimization problems, in which the aim

is to find the best state according to an

In such cases, can use iterative improvement
algorithms; keep a single “current" state, try to

Local Search Algorithms

• Local search algorithms operate using

• a single current state (rather than multiple
paths) and generally move only to neighbors
of that state.of that state.

• Recall:

• A complete, local search algorithm always finds
a goal if one exists;

• An optimal algorithm always finds a, global
minimum/maximum.

Local Search Algorithms

Local search algorithms operate using

current state (rather than multiple
paths) and generally move only to neighbors

local search algorithm always finds

always finds a, global

Example n-queens

• Put n queens on an nxn board with no two queens on
the same row, column, or diagonal

• Local search: start with all n, move a queen to reduce
conflicts

Local Search Algorithms

conflicts

board with no two queens on
the same row, column, or diagonal

Local search: start with all n, move a queen to reduce

Local Search Algorithms

Local Search Algorithms

• Hill Climbing

• Simulated annealing

• Genetic algorithms

• Local search in continuous spaces• Local search in continuous spaces

Local Search Algorithms

Local search in continuous spacesLocal search in continuous spaces

Simulated annealing search

• Idea: escape local maxima by allowing some “bad”
moves but gradually decrease their size and frequency

• At fixed temperature T, state occupation probability
reaches Boltzman distribution

• T decreases slowly enough and guarantees to reach • T decreases slowly enough and guarantees to reach
best state x

• “Ping-pong ball example”

Simulated annealing search

escape local maxima by allowing some “bad”
moves but gradually decrease their size and frequency

At fixed temperature T, state occupation probability
distribution

T decreases slowly enough and guarantees to reach T decreases slowly enough and guarantees to reach

Simulated annealing search

• Algorithm:

– From current state, pick a random successor state;

– If it is better than current state, then use it as current

– Otherwise, -Instead of restarting from a random point
allow the search to take some downhill steps to try to escape local allow the search to take some downhill steps to try to escape local
maxima.

Simulated annealing search

From current state, pick a random successor state;

it is better than current state, then use it as current state;

Instead of restarting from a random point- we can
allow the search to take some downhill steps to try to escape local allow the search to take some downhill steps to try to escape local

Simulated annealing search

• Probability of downward steps is controlled by
parameter.

• High temperature implies high chance of trying locally "bad"
moves, allowing nondeterministic

• Low temperature makes search more deterministic (like hill
climbing). climbing).

• Temperature begins high and gradually decreases according to
a predetermined annealing schedule.

• Initially we are willing to try out lots of possible paths, but over
time we gradually settle in on the most promising path.

• If temperature is lowered slowly enough, an optimal solution will
be found. In practice, this schedule is often too slow

Simulated annealing search

of downward steps is controlled by temperature

temperature implies high chance of trying locally "bad"
nondeterministic exploration.

temperature makes search more deterministic (like hill-

begins high and gradually decreases according to
annealing schedule.

we are willing to try out lots of possible paths, but over
time we gradually settle in on the most promising path.

If temperature is lowered slowly enough, an optimal solution will
In practice, this schedule is often too slow

The Genetic Algorithm
(Evolutionary Analogy)

• Consider a population of rabbits:

� some individuals are faster and smarter than others

� Slower, dumper rabbits are likely to be
caught and eaten by foxes

� Fast, smart rabbits survive ,… produce more rabbits.

The Genetic Algorithm
(Evolutionary Analogy)

Consider a population of rabbits:

some individuals are faster and smarter than others

Slower, dumper rabbits are likely to be

Fast, smart rabbits survive ,… produce more rabbits.

Evolutionary Analogy

�The rabbits that survive generate offspring,
which start to mix up their genetic material

�Furthermore, nature occasionally throws in a
wild properties because genes can mutatewild properties because genes can mutate

�In this analogy, an individual rabbit represents a
solution to the problem(i.e
space)

�The foxes represent the problem constraints
(solutions that do more well are likely to survive)

Evolutionary Analogy

The rabbits that survive generate offspring,
which start to mix up their genetic material

Furthermore, nature occasionally throws in a
wild properties because genes can mutatewild properties because genes can mutate

In this analogy, an individual rabbit represents a
the problem(i.e. Single point in the

The foxes represent the problem constraints
(solutions that do more well are likely to survive)

Evolutionary Analogy

• Evolution Fundamental Laws:

�Change in species is due to change in genes
over reproduction or/and due to mutation

�For selection, we use a fitness function to rank
individuals of the population

�For reproduction, we define a crossover operator which �For reproduction, we define a crossover operator which
takes state descriptions of individuals and combine
them to create new ones

�For mutation, we can choose individuals in the
population and alter part of its state

Evolutionary Analogy

Evolution Fundamental Laws: Survival of the fittest.

in species is due to change in genes
over reproduction or/and due to mutation.

selection, we use a fitness function to rank
individuals of the population

For reproduction, we define a crossover operator which For reproduction, we define a crossover operator which
takes state descriptions of individuals and combine

For mutation, we can choose individuals in the
population and alter part of its state.

The Genetic Algorithm

• Directed search algorithms based on the mechanics of
biological evolution

• Developed by John Holland, University of Michigan
(1970’s)

• To design artificial systems software that retains the • To design artificial systems software that retains the
robustness of natural systems

• Provide efficient, effective techniques for search
problems, optimization and machine learning applications

• Widely-used today in business, scientific and engineering
circles

The Genetic Algorithm

Directed search algorithms based on the mechanics of

Developed by John Holland, University of Michigan

To design artificial systems software that retains the To design artificial systems software that retains the
robustness of natural systems

Provide efficient, effective techniques for search
problems, optimization and machine learning applications

used today in business, scientific and engineering

Terminology

• Evolutionary Computation (EC)
based problem solving systems that use computational
models of evolutionary process.

• Chromosome – It is an individual representing a
candidate solution of the optimization problem.

• Population – A set of chromosomes.• Population – A set of chromosomes.

• gene – It is the fundamental building block of the
chromosome, each gene in a chromosome represents
each variable to be optimized. It is the smallest unit of
information.

• Objective: To find “a” best possible chromosome for a
given problem.

Terminology

Evolutionary Computation (EC) refers to computer-
based problem solving systems that use computational
models of evolutionary process.

It is an individual representing a
candidate solution of the optimization problem.

A set of chromosomes.A set of chromosomes.

It is the fundamental building block of the
chromosome, each gene in a chromosome represents
each variable to be optimized. It is the smallest unit of

best possible chromosome for a

Overview of GAs

� GA emulate genetic evolution.

� A GA has distinct features:

�A string representation of chromosomes.

�A selection procedure for initial population and
for off-spring creation.for off-spring creation.

�A cross-over method and a mutation method.

�A fitness function.

�A replacement procedure.

� Parameters that affect GA are initial
population, size of the population, selection
process and fitness function.

Overview of GAs

GA emulate genetic evolution.

A GA has distinct features:

A string representation of chromosomes.

A selection procedure for initial population and
spring creation.spring creation.

over method and a mutation method.

A replacement procedure.

Parameters that affect GA are initial
population, size of the population, selection
process and fitness function.

Evolutionary

Let t = 0 be the generation counter;

create and initialize a population

repeat

Evaluate the fitness, f(xi), for all i

Perform cross-over to produce offspring;

Perform mutation on offspring;

Select population P(t+1)

Advance to the new generation,

until stopping condition is true;

Evolutionary Algorithm

Let t = 0 be the generation counter;

create and initialize a population P(0);

), for all xi belonging to P(t);i

over to produce offspring;

Perform mutation on offspring;

of new generation;

Advance to the new generation, i.e., t = t+1;

stopping condition is true;

The GA Cycle of Reproduction

reproduction

parents

children

population

discard

deleted

members

evaluated children

The GA Cycle of Reproduction

modification
children

modified

children

evaluation
evaluated children

Chromosomes

Chromosomes could be:

Bit strings (0101 ... 1100)

population

Bit strings (0101 ... 1100)

Real numbers (43.2

Permutations of element (E11 E3 E7 ... E1 E15)

Lists of rules (R1 R2 R3 ... R22 R23)

Program elements (genetic programming)

... any data structure ...

Chromosomes

Chromosomes could be:

Bit strings (0101 ... 1100)

population

Bit strings (0101 ... 1100)

Real numbers (43.2 -33.1 ... 0.0 89.2)

Permutations of element (E11 E3 E7 ... E1 E15)

Lists of rules (R1 R2 R3 ... R22 R23)

Program elements (genetic programming)

Reproduction

reproduction

population

parents

population

Reproduction is a processes of creating new
chromosomes out of chromosomes in the
population. Parents are ”selected”

Reproduction

children

is a processes of creating new
chromosomes out of chromosomes in the

”selected” at each iteration.

Selection Process

• Selection is a procedure of picking parent chromosome
to produce off-spring.

• Types of selection:

– Random Selection – Parents are selected randomly
from the population.

– Proportional Selection
chromosome is calculated as:

P(xi) = f(x

Selection is a procedure of picking parent chromosome

Parents are selected randomly

Proportional Selection – probabilities for picking each
chromosome is calculated as:

xi)/Σf(xj) for all j

Chromosome Modification

modification
children

• Operator types are:

– Mutation

– Crossover (recombination)

Chromosome Modification

modification

modified children

Crossover (recombination)

Crossover

P1 (0 1 1 0 1 0 0 0) (1 1 0 1 1 0 0 0)

P2 (1 1 0 1 1 0 1 0) (0 1 1 0 1 0 1 0)

Cross-over : It is a process of creating one or
more new individuals through the
combination of genetic material randomly combination of genetic material randomly
selected from two or parents.

Crossover is a critical feature of genetic

algorithms:

– It greatly accelerates search early in evolution of
a population

– It leads to effective combination of schemata
(subsolutions on different chromosomes)

Crossover

(0 1 1 0 1 0 0 0) (1 1 0 1 1 0 0 0) C1

(1 1 0 1 1 0 1 0) (0 1 1 0 1 0 1 0) C2

over : It is a process of creating one or
more new individuals through the
combination of genetic material randomly combination of genetic material randomly
selected from two or parents.

is a critical feature of genetic

It greatly accelerates search early in evolution of

It leads to effective combination of schemata
on different chromosomes)

Cross

• Uniform cross-over : where corresponding bit positions
are randomly exchanged between two parents.

• One point : random bit is selected and entire sub
after the bit is swapped.

• Two point : two bits are selected and the sub
between the bits is swapped.

Uniform
Cross-over

Parent1
Parent2

00110110
11011011

Off-spring1
Off-spring2

01110111
10011010

Cross-over

: where corresponding bit positions
are randomly exchanged between two parents.

: random bit is selected and entire sub-string

: two bits are selected and the sub-string
between the bits is swapped.

One point
Cross-over

Two point
Cross-over

00110110
11011011

00110110
11011011

00111011
11010110

01011010
10110111

Mutation: Local Modification

Before: (1 0 1 1 0 1 1 0)

After: (1 0 1 1 1 1 1 0)

Before: (1.38 -69.4 326.44 0.1)

After: (1.38 -67.5 326.44 0.1)

• Causes movement in the search space
(local or global)

• Restores lost information to the

• Prevents falling all solutions in population
into a local optimum.

Mutation: Local Modification

(1 0 1 1 0 1 1 0)

(1 0 1 1 1 1 1 0)

69.4 326.44 0.1)

67.5 326.44 0.1)

Causes movement in the search space

Restores lost information to the population

falling all solutions in population

Evaluation

evaluation

evaluated

children

• The evaluator decodes a chromosome and
assigns it a fitness measure

Evaluation

evaluation

modified

children

The evaluator decodes a chromosome and
fitness measure

Deletion

population

discard

discarded members

• Generational GA:
entire populations replaced with each iteration

• Steady-state GA:
a few members replaced each generation

Deletion

population

discard

entire populations replaced with each iteration

a few members replaced each generation

• Fitness function: number of non
(min = 0, max = 8 × 7/2 = 28)
Fitness function: number of non-attacking pairs of queens

7/2 = 28)

fitness:
#non-attacking queens

• Fitness function: number of non
(min = 0, max = 8 × 7/2 = 28)

• P(child) = 24/(24+23+20+11) = 31%

• P(child) = 23/(24+23+20+11) = 29% etc

probability of being
regenerated
in next generation

Fitness function: number of non-attacking pairs of queens
7/2 = 28)

P(child) = 24/(24+23+20+11) = 31%

P(child) = 23/(24+23+20+11) = 29% etc

Creativity in GA

�GAs can be thought of as a simultaneous, parallel
hill climbing search --- The population as a whole is
trying to converge to an optimal solution

�Because solutions can evolve from a variety of
factors, very novel solutions can be discovered

Creativity in GA

GAs can be thought of as a simultaneous, parallel
The population as a whole is

trying to converge to an optimal solution

Because solutions can evolve from a variety of
factors, very novel solutions can be discovered

A list of AI Search Algorithms

Systematic Search algorithms

� BFS, DFS,...

� A*
� AO*

� IDA* (Iterative Deepening)

Local Search AlgorithmsLocal Search Algorithms

� Minimax Search on Game Trees

� Viterbi Search on Probabilistic FSA

� Hill Climbing

� Simulated Annealing

� Gradient Descent

� Stack Based Search

� Genetic Algorithms

� Memetic Algorithms

A list of AI Search Algorithms

Systematic Search algorithms

IDA* (Iterative Deepening)

Search on Game Trees

Search on Probabilistic FSA

