- In many optimization problems, path is irrelevant
- the goal state itself is the solution
- Ex: The 8-queen problem, the final configuration of the queens is the important not the order they were put
- Operates using only single current state, rather than multiple paths.
- Find Optimal Configuration (satisfies the constraints)
- Use iterative improvement algorithms
- Good for Optimization problems: find the best state according to some objective function
- A Complete local search algorithm finds a goal if exists
- An Optimal algorithm finds the global minimum or maximum

- In many optimization problems, path is irrelevant; the goal state itself is the solution
- local search algorithms are useful for solving pure optimization problems, in which the aim is to find the best state according to an objective function.
- In such cases, can use iterative improvement algorithms; keep a single "current" state, try to improve it

- Local search algorithms operate using
- a single current state (rather than multiple paths) and generally move only to neighbors of that state.
- Recall:
- A complete, local search algorithm always finds a goal if one exists;
- An optimal algorithm always finds a, global minimum/maximum.

Example n-queens

- Put n queens on an nxn board with no two queens on the same row, column, or diagonal
- Local search: start with all n, move a queen to reduce conflicts

- Hill Climbing
- Simulated annealing
- Genetic algorithms
- Local search in continuous spaces

Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency
- At fixed temperature T, state occupation probability reaches Boltzman distribution
- T decreases slowly enough and guarantees to reach best state x
- "Ping-pong ball example"

Simulated annealing search

Algorithm:

- From current state, pick a random successor state;
- If it is better than current state, then use it as current state;
- Otherwise, -Instead of restarting from a random point- we can allow the search to take some downhill steps to try to escape local maxima.

Simulated annealing search

- Probability of downward steps is controlled by temperature parameter.
- High temperature implies high chance of trying locally "bad" moves, allowing nondeterministic exploration.
- Low temperature makes search more deterministic (like hillclimbing).
- Temperature begins high and gradually decreases according to a predetermined **annealing schedule.**
- Initially we are willing to try out lots of possible paths, but over time we gradually settle in on the most promising path.
- If temperature is lowered slowly enough, an optimal solution will be found. In practice, this schedule is often too slow

The Genetic Algorithm (Evolutionary Analogy)

- Consider a population of rabbits:
- some individuals are faster and smarter than others
- Slower, dumper rabbits are likely to be caught and eaten by foxes

Fast, smart rabbits survive ,... produce more rabbits.

Evolutionary Analogy

- The rabbits that survive generate offspring, which start to mix up their genetic material
- ➤ Furthermore, nature occasionally throws in a wild properties because genes can mutate
- ➤ In this analogy, an individual rabbit represents a solution to the problem(i.e. Single point in the space)
- The foxes represent the problem constraints (solutions that do more well are likely to survive)

Evolutionary Analogy

- Evolution Fundamental Laws: Survival of the fittest.
- Change in species is due to change in genes over reproduction or/and due to mutation.
- ➤ For selection, we use a fitness function to rank individuals of the population
- ➤ For reproduction, we define a crossover operator which takes state descriptions of individuals and combine them to create new ones
- For mutation, we can choose individuals in the population and alter part of its state.

The Genetic Algorithm

- Directed search algorithms based on the mechanics of biological evolution
- Developed by John Holland, University of Michigan (1970's)
- To design artificial systems software that retains the robustness of natural systems
- Provide efficient, effective techniques for search problems, optimization and machine learning applications
- Widely-used today in business, scientific and engineering circles

Terminology

- Evolutionary Computation (EC) refers to computerbased problem solving systems that use computational models of evolutionary process.
- *Chromosome* It is an individual representing a candidate solution of the optimization problem.
- Population A set of chromosomes.
- gene It is the fundamental building block of the chromosome, each gene in a chromosome represents each variable to be optimized. It is the smallest unit of information.
- Objective: To find "a" best possible chromosome for a given problem.

Overview of GAs

- GA emulate genetic evolution.
- A GA has distinct features:
 - > A string representation of chromosomes.
 - A selection procedure for initial population and for off-spring creation.
 - > A cross-over method and a mutation method.
 - > A fitness function.
 - A replacement procedure.
- Parameters that affect GA are initial population, size of the population, selection process and fitness function.

Evolutionary Algorithm

```
Let t = 0 be the generation counter;
create and initialize a population P(0);
repeat
   Evaluate the fitness, f(\mathbf{x_i}), for all \mathbf{x_i} belonging to P(t);
   Perform cross-over to produce offspring;
   Perform mutation on offspring;
   Select population P(t+1) of new generation;
   Advance to the new generation, i.e., t = t+1;
until stopping condition is true;
```

The GA Cycle of Reproduction

Chromosomes

population

Chromosomes could be:

Bit strings (0101 ... 1100)

Real numbers (43.2 -33.1 ... 0.0 89.2)

Permutations of element (E11 E3 E7 ... E1 E15)

Lists of rules (R1 R2 R3 ... R22 R23)

Program elements (genetic programming)

... any data structure ...

Reproduction

Reproduction is a processes of creating new chromosomes out of chromosomes in the population. Parents are "selected" at each iteration.

Selection Process

- Selection is a procedure of picking parent chromosome to produce off-spring.
- Types of selection:
 - Random Selection Parents are selected randomly from the population.
 - Proportional Selection probabilities for picking each chromosome is calculated as:

$$P(\mathbf{x_i}) = f(\mathbf{x_i})/\Sigma f(\mathbf{x_i})$$
 for all j

Chromosome Modification

- Operator types are:
 - Mutation
 - Crossover (recombination)

Crossover

P1
$$(01101000)$$
 (11011000) C1
P2 (11011010) (01101010) C2

Cross-over: It is a process of creating one or more new individuals through the combination of genetic material randomly selected from two or parents.

Crossover is a critical feature of genetic algorithms:

- It greatly accelerates search early in evolution of a population
- It leads to effective combination of schemata (subsolutions on different chromosomes)

Cross-over

- Uniform cross-over: where corresponding bit positions are randomly exchanged between two parents.
- One point: random bit is selected and entire sub-string after the bit is swapped.
- Two point: two bits are selected and the sub-string between the bits is swapped.

	Uniform	One point	Two point
	Cross-over	Cross-over	Cross-over
Parent1	0 <mark>0</mark> 11011 <mark>0</mark>	00110110	00110110
Parent2	11011011	110 ₁ 11011	11011011
Off-spring1	01110111	001 <mark>11011</mark>	01011010
Off-spring2	10011010	11010110	10110111

Mutation: Local Modification

Before:

 (1
 0
 1
 1
 0
 1
 1
 0)

 (1
 0
 1
 1
 1
 1
 0)
 After:

Before: $(1.38 \mid -69.4 \mid 326.44 \mid 0.1)$

(1.38 | -67.5 | 326.44 | 0.1) After:

- Causes movement in the search space (local or global)
- Restores lost information to the population
- Prevents falling all solutions in population into a local optimum.

Evaluation

 The evaluator decodes a chromosome and assigns it a fitness measure

Deletion

- Generational GA: entire populations replaced with each iteration
- Steady-state GA: a few members replaced each generation

 Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)

- Fitness function: number of non-attacking pairs of queens $(min = 0, max = 8 \times 7/2 = 28)$
 - P(child) = 24/(24+23+20+11) = 31%
 - P(child) = 23/(24+23+20+11) = 29% etc

Creativity in GA

- ✓ GAs can be thought of as a simultaneous, parallel hill climbing search --- The population as a whole is trying to converge to an optimal solution
- Because solutions can evolve from a variety of factors, very novel solutions can be discovered

A list of AI Search Algorithms

Systematic Search algorithms

- BFS, DFS,...
- A*
 - AO*
 - IDA* (Iterative Deepening)

- Minimax Search on Game Trees
- Viterbi Search on Probabilistic FSA
- Hill Climbing
- Simulated Annealing
- Gradient Descent
- Stack Based Search
- Genetic Algorithms
- Memetic Algorithms